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Abstract 

A framework for the flexible and conservative modification of plans enables a planner to 
modify its plans in response to incremental changes in their specifications, to reuse its existing 
plans in new problem situations, and to efficiently replan in response to execution time failures. 
We present a theory of plan modification applicable to hierarchical nonlinear planning. Our 
theory utilizes the validation structure of stored plans to yield a flexible and conservative plan 
modification framework. The validation structure, which constitutes a hierarchical explanation 
of correctness of the plan with respect to the planner's own knowledge of the domain, is anno- 
tated on the plan as a by-product of initial planning. Plan modification is formalized as a pro- 
cess of removing inconsistencies in the validation structure of a plan when it is being reused in 
a new (changed) planning situatioa The repair of these inconsistencies involves removing 
unnecessary parts of the plan and adding new non-primitive tasks to the plan to establish miss- 
ing or failing validations. The resultant partially reduced plan (with a consistent validation 
structure) is sent to the planner for complete reduction. We discuss the development of this 
theory in the PRIAR system, present an empirical evaluation of this theory, and characterize its 
completeness, coverage, efficiency and limitations. 
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1.  Introduction 
The ability to incrementally modify existing plan:, to make them conform to the constraints of 

a new or changed planning situation is very useful in plan reuse (reusing existing plans to 

solve new planning p*"blcms), rcplanning (modifying a current plan in response to executing 

time failures), and incremental planning (updating a plan in response to evolving specifications 

during interactive planning). Two important desiderata for the plan modification capability are 

flexibility and conservatism. Flexibility is the ability to modify a plan to handle a wide variety 

of changes in the specification. Conservatism is the ability to minimally change the existing 

plan to make it fit to the new problem situation. The former is required for effective coverage 

of modification, while the latter is needed to ensure efficiency. 

While the value of plan modification has been acknowledged early in planning research 

[6,9], the strategies developed were inflexible, in that they could reuse or modify a given plan 

in only a limited number of situations, and could deal with only a limited variety of applicabil- 

ity failures. There was no general framework for conservatively modifying an existing plan to 

fit it to the constraints of a new problem situation. A major shortcoming with these 

approaches was that the stored plans did not represent enough information about the internal 

dependencies of the plan to permit flexible modification. For example, reuse based on macro- 

operators [6] built from sequences of primitive plan steps was unable to modify intermediate 

steps of the macro-operators as the macro-operators did not represent the intermediate deci- 

sions and dependencies corresponding to their internal steps. Even in cases where the need for 

the dependency information was recognized (e.g. [5,34]), a systematic representation and utili- 

zation of such structures ;n plan reuse and modification was not attempted. 

We present a theory of plan modification that allows flexible and conservative 

modification of plans generated by a hierarchical nonlinear planner. Hierarchical planning is a 

prominent method of abstraction and least-commitment in domain-independent planning (4]. 

Our theory of plan modification proposes validation structure as a way of representing the 

internal dependencies of a hierarchical plan and provides algorithms for annotating the valida- 

tion structure on the plans during plan generation. It systematically explores the utility of the 

annotated validation structure in guiding and controlling all the processes involved in flexible 

plan reuse and modification. The PRIAR reuse system [15,16,17,14,13,12] is our implemen- 

tation of this theory. This paper presents the plan modification framework used in PRIAR and 

evaluates its performance, completeness, coverage, efficiency and limitations. 

1.1. Overview of the PRIAR Plan Modification Theory 
The plan modification problem that is addressed in PRIAR is the following: Given (i) a 

planning problem P" (specified by a partial description of the initial state /* and goal state 

C"), (I'I) an existing plan R° (generated by a hierarchical nonlinear planner), and the 

corresponding planning problem P°, Produce a plan for P* by minimally modifying R°. Fig- 

ure 1 shows the schematic overview of the PRIAR plan modification framework. 

3 

i 

mm 

Si,,..,-. u 



(2) Annotation Verification: The inconsistencies in the validation structure of/?' are located, 
and appropriate repairs arc suggested. The repairs include removing parts of R' that arc 
unnecessary- and adding non-primitive tasks (called refit tasks) to establish any required new 
validations. The resulting annotation-verified plan R" will have a consistent validation struc- 
ture but is typically only partially reduced. It consists of all the applicable parts of /?' and 
any newly introduced refit tasks. 

(3) Refitting: The refit tasks specified during the annotation verification phase constitute sub- 
planning problems for the hierarchical planner. The refuting process involves reducing them 

with the help of the planner. Conservatism is ensured during this process through the use of 
a heuristic control strategy which minimizes the disturbance to the applicable parts of R" by 
estimating the disturbance caused to its validation structure. 

Computational savings stem from the fact that the complexity of solving the sub-planning 
problems during refitting is much less than the complexity of solving the entire planning prob- 
lem from scratch. This is supported by the results of the empirical studies in blocks world, 
which showed that plan modification provides 20-98% savings (corresponding to speedup fac- 
tors of 1.5 to 50) over pure generative planning, with the highest gains shown for the most 
complex problems tested (the details of these studies are provided in section 4.1). 

1.2. Comparison to Previous Work 
Here we will briefly summarize some broad distinctions between our theory, and the previous 
approaches to plan modification; a more detailed discussion of related work appears in section 
6 and in [13]. 

Representations of plan internal dependency structure have been used by several planners 
previously to guide plan modification (e.g., the triangle tables and the macro operators of [6] 
and [11]; the decision graphs of [9] and [5]; the plan rationale representation of [34]). How- 
ever, our work is the first to systematically characterize the nature of such dependency struc- 
tures and their role in plan modification. It subsumes and formalizes the previous approaches, 
provides a better coverage of applicability failures, and allows the reuse of a plan in a larger 
variety of new planning situations. Unlike the previous approaches, it also explicitly focuses 
on the flexibility and conservatism of the plan modification. The modification is fully 
integrated with the generative planning, and aims to reduce the average case cost of producing 
correct plans. In this sense, PRlAR's strategies are complementary to the plan debugging stra- 
tegies proposed in GORDIUS [27] and CHEF [8], which use an explanation of correctness of the 
plan with respect to an external (deeper) domain model—generated through a causal simulation 
of the plan to guide the debugging of the plan—*o compensate for the inadequacies of the 
planner's own domain model. Similarly, PRlAR's validation structure based approach to plan 
modification stands in contrast to approaches which rely on domain dependent heuristic 
modification of the plan (e.g. [8,1,22]). Our approach of giounding plan modification on vali- 
dation structure guarantees the correctness of the modification with respect to planner's domain 
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model and reduces the nccJ for a costly modify-tcst-debug type approach. 

1.3.  Organization of the Paper 

The rest of this section introduces some preliminary notation and terminology used throughout 
the paper. Sccti in 2 presents the notion of plan validation structure, explains the motivation 
behind remembering it along with each generated plan, and develops a scheme for annotating 
the plans. Section 3 develops the basic modification processes, and explains how they utilize 
the plan validation structure. In particular, it provides the details of the mapping, annotation 
verification and refitting processes and presents an example of plan modification in this frame- 
work. It also includes a brief discussion of the control strategies for guiding refitting and 
retrieval. Section 4 contains an empirical and theoretical analysis of the PR1AR plan 

modification theory. It summarizes the results of the empirical evaluation experiments con- 

ducted on the implemented system, and discusses the completeness, coverage, flexibility and 

efficiency of the modification framework. Section 5 contains a detailed discussion of related 
work and section 6 summarizes the research. Appendix A contains an annotated trace of the 
PRIAR system solving a problem and Appendix B contains the specification of the domain used 
in the empirical evaluation. 

1.4.  Preliminaries, Notation and Terminology 
This paper develops a theory of plan modification in the context of hierarchical nonlinear plan- 
ning. Hierarchical nonlinear planning (known also as hierarchical planning) is a prominent 
method of abstraction and least commitment in domain independent planning. A good intro- 
duction to this methodology can be found in [4]. Some well known hierarchical planners 
include NOAH [25], NONUN [30] and SIPE [33]. For a review of these and other previous 
approaches to planning, see [10]. 

In hierarchical planning, a partial plan is represented as a task network consisting of high 
level tasks to be carried out. A task network is a set of tasks with partial chronological order- 
ing relations among the tasks. Planning involves reducing these high level tasks with the help 
of predefined "task reduction Schemas," to successively more concrete subtasks. The task 
reduction schemas are given to the planner a priori as part of the domain specification. The 
collection of task networks, at increasing levels of detail showing the development of the plan, 
is called the "hierarchical task network" or "HTN" of the plan. Planning is considered com- 
plete when the all the leaf nodes of the HTN are either primitive tasks (tasks that cannot be 
decomposed any further) or phantom goals (tasks that are achieved as side-effects of some 
other tasks). The entire tree structure in Figure 2 shows the hierarchical plan for a simple 
blocks world planning problem. In the following, we provide formal definitions of some of 
these notions, to facilitate the development in the rest of the paper. 

§1.1. Partial Plans and Task networks: A partial plan P is represented as a task network 
and can be formalized [37] as a 3-tuple (T,0 ,TT). where T is a set of tasks, O defines a partial 



ordering among elements of T, and Fl is a set of conditions aiong with specifications about 
where those conditions must hold. Each task T has a set of applicability conditions, denoted 
by conditions(T), and a set of expected effects, denoted by effects(T), where each set con- 
sists of literals in first order predicate calculus. Elements of n arc called protection intervals 
[4], and arc represented by 3-tuplcs (E,f,,r2), where t,,f2 e T, E e effects (trf and E has to 

necessarily persist up to f2. 

§1.2. Schemas and Task Reduction: A task reduction schema 5 can itself be formalized as a 
mini task network template thai can be used to replace some task t a T of the plan P, when 
certain applicability conditions of the schema arc satisfied. Satisfying the applicability condi- 
tions this way involves adding new protection intervals to the resultant plan. Thus when the 
set of applicability conditions [Cf] of an instance 5, of a task reduction schema S can be 

satisfied at a task t in a partial plan P, then t can be reduced with 5,. The reduction, denoted 

by 5,(f), is another task network (Js,Os,nt). The task t will be linked by a parent relation to 

each task of Ts
l. The plan P' resulting from this task reduction is constructed by incorporat- 

ing S,-(0 into P. During this incorporation step, some harmful interactions may develop due 
to the violation of established protection intervals of P. The planner handles these harmful 
interactions either by posting additional partial ordering relations, or by backtracking over 
previous planning decisions. When the planner is successful in incorporating S,(f) into P 

and resolving all the harmful interactions, the resultant plan, P' can be represented by the task 
network P':(TKJTt-{t}, 0\JOsKJO[, W), where: 

(1) O' is computed by appropriately redirecting the ordering relations involving the reduced 
task t to its children 

(2) 0/ are the ordering relations introduced during the interaction resolution false 

(3) Finally, the protection intervals IT is computed by (i) combining n and n,, (n) adding 

any protection intervals that were newly established to support the applicability conditions 
of the schema instance 5, and (Hi) appropriately redirecting the protection intervals 
involving the reduced task t to its childrea 

During the redirection in the last step, the planner converts any protection interval 
(£,r,,r2) e n where tx=t to (£,ttb,t2/, and converts any protection intervals where tf=t to 
(C,/j,r„) (where t,b,t„ are appropriate tasks belonging to Ts). The various implemented 

planners follow different conventions about how the appropriate tsb and t„ are computed. For 

example, irrespective of the protected condition £, NONLIN [29j makes tsb to be r^, and r^ to 

be tend, where rh, and ttnd are the beginning and ending tasks of T, (i.e., no task of Ts pre- 

cedes t^g or follows ttnd ) respectively. Other conventions might look at the effects and 

% 

% 

1 When the task t is of the form achieve (C), and C can be achieved directly by using the effects of some 
other task lc € T, then, t becomes ».phantom task and its reduction becomes /{pAan'0m(C)},0,0). A new pro- 
tection interval (CJCJ) will be added to the resultant plan. 
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conditions of tasks belonging to T, to decide tfJ and tsh.  For the purposes of this paper, either 
of these conventions is admissible. t 

§ 13. Completed Plan: A task network is said to represent a completed plan when none of its • 
tasks have to be reduced further.  The planner cannot reduce certain distinguished tasks of the < 
domain called primitive tasks. (It is assumed that the planner already knows how to execute 
such tasks.)  Further, if all the required effects of t task are already true in a given partial plan, ; 
then that task docs not have to be rcdureJ any further (such tasks are called phantom goals I 

[41). f 

§   1.4.   Hierarchical  Task   Network  (HTN):    The  hierarchical    development  of a  plan § 
P:(r,0,n) is captured by its hierarchical task network (abbreviated as HTN).   HTN(/') is a 3- | 

tuple (P^r.O.ri), T*£>), where 7** is the union of set of tasks in T and all their ancestors. I 
and D represents the parent-child relations between the elements of T*. The set n is the set of f 
protection intervals associated with HTN^). (For convenience, we shall abbreviate HTN(,P) to f 

HTN, where the reference to P is unambiguous, and also refer to the members of 7** as the f: 
nodes of HTN.) The HTN of a plan thus captures the development of that plan in terms of the f 
corresponding task reductions. We shall refer to the number of leaf nodes in the HTN, IT I as | 
the length of the corresponding plan, and denote it by NP. | 

For the sake of uniformity, we shall assume that there arc two special primitive nodes nf | 
and % in the HTN corresponding to the input state and the goal state of the planning problem, I 
such that effects («/) comprise the facts true in the initial specification of the problem, and | 
conditions (nG) contain the goals of the problem. The notation "«, < /i2" (where nx and n2 f 
are nodes of HTN) is used to indicate that n, is ordered to precede n2 in the partially ordercred 
plan represented by the HTN (i.e., «j e predecessor* (n^, where the predecessor relations 
enforce the partial ordering among the nodes of the HTN).  Similarly, "n^ > n2' denotes that i 

n{ is ordered to follow n2. and "niffn2" denotes that there is no ordering relation between J 

the two nodes («1 is parallel to n£. The set consisting of a node n and all its descendents in | 

the HTN is defined as the sub-reduction of n, and is denoted by /?(")• Following [4,30], we I 
also distinguish two types of plan applicability conditions: the preconditions (such as Clear (A) . .. . . 
in the blocks world) which the planner can achieve, and the filter conditions (such as 1 <■     i 

Block(A)) which the planner cannot achieve. We shall use the notation "F h- /" to indicate 

that / deductively follows from the set of facts in F. Finally, the modal operators "D " and 
"0 " denote necessary and possible truth of an assertion. 

2. Validation Structure and Annotations 
Here we formally develop the notion of the validation structure of a plan as an explicit 
representation of the internal dependencies of a plan, and provide motivation for remembering 
such structures along with the stored plan. We will begin the discussion by defining our 
notion of validation,   present a scheme for representing the validation structure locally as 

':$. 



annotations on individual nodes of a HTN, and finally discuss algorithms for efficient computa- 
tion of these node validations. 

2.1.  Validation Structure 
§2.1. Validation: A validation v is a 4-tuple (£, «,, C, nd), where ns and nd are leaf nodes 

belonging to the HTN, and the effect E of node ns (called the source) is used to satisfy the 
applicability condition C of node nd (called the destination). C and £ are referred to as the 
supported condition and the supporting effect respectively of the validation. As a necessary 
condition for the existence of the validation v, the partial ordering among the tasks in HTN 
must satisfy the relation ns<nd. The type of a validation is denned as the type of the applica- 

bility condition that the validation supports (one of filter condition, precondition, phantom 
goat). Notice that every validation v: (£, n,, C, rt,) corresponds to a protection interval 

(E,ns,nd) e FI of the HTN (that is, the effect E of r. jde ns is protected from node ns to node 

nd). This correspondence implies that there will be a finite set of validations corresponding to 

a given HTN representing the development of a plan; we shall call this set V. (If % is the max- 
imum number of applicability conditions for any action in the domain, then IVI £ Zflp, where 
NP is the length of the plan as defined above [13].) 

Figure 2 shows the validation structure of the i in for solving a block stacking problem 
,3BS (also shown in the figure). Validations are represented graphically as links between the 
effect of the source noje and the condition of the destination node. (For the sake of exposi- 
tion, validations supporting conditions of the type Block(?x) have not been shown in the 
figure.) As an example, (On (B ,C),/»l5,On (B ,C ),na) is a validation belonging to this plan 

since On(B,C) is required at the goal state «c, and is provided by the effect On(B,C) of 
node n 15. 

The level of a validation is defined as the reduction level at which it was first introduced 
into the HTN (see [13] for the formalization of this notion). For example, in Figure 2, the vali- 
dation (Block(A),n,^lock(A),n^ is considered to be of a higher level than the validation 

(On(A,Table),ni,On(A,Table),n\6}, since the former is introduced into the HTN to facilitate 
the reduction of task n3 while the latter is introduced during the reduction of task n9. A useful 
characteristic of hierarchical planning is that its domain Schemas are written in such a way that 
the more important validations are established at higher levels, while the establishment of less 
important validations is delegated to lower levels. Thus, the level at which a validation is first 
introduced into an HTN can be taken to be predictive of the importance of that validation, and 

the effort required to (reestablish it.2 The validation levels can be pre-computed efficiently at 
the time of annotation. 

2 We assume that domain Schemas having this type of abstraction property are supplied/encoded by the user in 
the first place. What we are doing here is to exploit the notion of importance implicit in that abstraction. 
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As the specification cf the plan changes or as the planner makes new planning decisions, 
the dependencies of the plan as represented in its validation structure get affected. The notions 
of co:*is?f.ncy and incon1"- i-ncies, developed below, capture the effects of such changes on the 
plan vali: ion structure. 

§2.2. Inconsistencies and Consistency of Validation Structure: A HTN is said to have a 
consistent validation structure if it does not have any unnecessary, missing or failing valida- 
tions. The unnecessary, missing or failing validations in a HTN will be referred to as 
ir consistencies in its validation structure. 

• \ validation v :(E ,ns ,C ,nd) is considered a failing validation when the corresponding pro- 

tection interval is undone. More formally, v is a failing validation iff: 

[ effects(ns)H- £ ] V [ 3«' s.t. §(ns<n<nd) A effects(n') r- -£ ] 

Thus, for every non-failing validation v :(£ ,ns ,C ,nd) of a HTN, the effects of ns should entail 
E, and E should necessarily persist from n, to nd. 

• A validation v: (E, ns, C, nd) is considered an unnecessary validation if it is not required 

to support the condition C at node nd. This could happen either because nd is no longer a part 
of 'he HTN or because it no longer requires the condition C. 

• There is a missing validation corresponding to a condition, node pair lf',n') of the HTN iff 

3 v: (£, ns, C, nd) s.t. C=C'/\ nd=n' (i.e., the condition C" is not supported by any valida- 
tion). 

Let us consider the example of the 3BS plan shown in Figure 2. If the specification of 
this plan is changed such that On (Aß) is no longer a goal, then (pn(Aß),nX(),On(Aß),nG) 

will be an unnecessary validation. Further, if the new specification contains a goal On(AJ}), 
then since there is no validation supporting the condition node pair (On (A J) ),nG), there is a 
missing validation corresponding to this pair. Finally, if we suppose that the new specification 
contains On (DA) in its initial state, then the validation (Clear (A),ni, Clear (A),n7) will be 

failing, as effect (n3) W- Clear (A). 

From these definitions, it should be clear that in a HTN with a consistent validation struc- 
ture, each applicability condition of a node (including each goal of «c) will have a non-failing 

validation supporting it. (A completely reduced HTN with a consistent validation structure con- 
stitutes a valid executable plan.) 

2.2. Annotating Validation Structures 
Having developed the notion of validation in a plan, our next concern is   representing the vali- 

g§§ dation structure of the plan locally as annotations on individual nodes of a HTN. The intent is 
to let these annotations encapsulate the role played by the sub-reduction below that node in the 
validation structure of the overall plan, so that they can help in efficiently gauging the effect of 



any modification at that node on the overall validation structure of the plan. We achieve this as 
follows: For each node n e HTN we define the notions of (i) e -conditions(«), which are the 
externally useful validations supplied by the nodes belonging to R(n) (the sub-reduction below 
n) 0'.') e-preconditions(n), which are the externally established validations that are consumed 
by nodes of R(n), and (Hi) p-conditions(n), which arc the external validations of the plan that 
are required to persist over the nodes of R(n). 

§2.3. £-Conditions (External Effect Conditions): The e -conditions of a node n correspond 
to the validations supported by the effects of any node of R (n) which are used to satisfy appli- 
cability conditions of the nodes that lie outside the sub-reduction. Thus, 

e-conditions(n) = {v,: (E, ns,C, n<y)|v,eV; nseR(n)\ nd$R(n) } 

For example, the e-conditions of the node n3 in the HTN of Figure 2 contain just the validation 

(On(A,B), ni6, On(Aß), nG) since that is the only effect of R(n3) which is used outside of 

R(n3). The c-conditions provide a way of stating the externally useful effects of a sub- 

reduction. They can be used to decide when a sub-reduction is no longer necessary, or how a 
change in its effects will affect the validation structure of the parts of the plan outside the sub- 
reduction. 

From the definition, the following relations between the e-conditions of a node and the 
e-conditions of its children follow: 

(1) If n is a leaf node, then R(n) = {«} and the e-conditions of n will simply be all the 
validations of HTN whose source is n. 

(2) If n is not a leaf node, and nc e children («), and vc :(E ,ns ,C ,nd) is an e-condition of 
nc, then vc will also be an e-condition of n as long as nd4R(n) (since R(nc) c R(n), 
[ns e R(nc)} =* [ns e R(n)}). 

(3) If v:(E,ns,C,nd) is an e-condition of n, then 3«c e children(n) such that v is an e- 

condition of nc. This follows from the fact that if ndi R(n) then V/»c e children(n), 

nd € R(nc), and that if ns e R(n), then 3«c e children(n) such that n, e. R(nc). 

These three relations allow PRIAR to first compute the c-conditions of all the leaf nodes of the 
HTN, and then compute the e-conditions of the non-leaf nodes from the «-conditions of their 
children. 

§2.4.  £-Preconditions  (External  Preconditions):   The  e -preconditions  of a  node  n 
M correspond to the validations supporting the applicability conditions of any node of R (n) that 

are satisfied by the effects of the nodes that lie outside of R(n). Thus, 

e-preconditions(«)= {v,-: (E, ns, C, nd)|v,-€V; ndeR(r): ns$R(n) ) 

For example, the e-preconditions of the node «3 in the HTN of Figure 2 will inc'ude the valida- 

tions (Clear(A), «/, Clear(A), n7) and (flear(B), n{, CIear(B), ng). The «-preconditions of 
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a node can be used to locate the parts of rest of the plan that will become unnecessary or 

redundant, if the sub-reduction below that node is changed. 

From the definition, the following relations between the e-preconditions of a node and the 
«-preconditions of its children follow: 

(1) If n is a leaf node, then R(n) = {n} and the ^-preconditions of n will simply be all the 
validations of HTN whose destination is n. 

(2) If n is not a leaf node, and nc e children(n), and vc:(E,ns,C,nd) is an e-precondition of 

nc, then vc will also be an f-precondition of « as long as ns4 R(n) (since Ä(«c)c R(n), 

nd e R{n)). 

(3) If v :{E ,n, ,C ,nd) is an e-precondition of n, then 3nc e children (n) such that v is an e- 

precondition of nc. This follows from the fact that if ns$ /?(«) then vnc e children{n) 

ns$R(nc) and that if nd e /?(«), then 3ne e children(n) such that nd e R(nc). 

These three relations allow PRIAR to first compute the e-preconditions of all leaf nodes of the 
HTN, and then compute the e-preconditions of the non-leaf nodes from the e-preconditions of 
their children. 

From the definitions of e-conditions and e-preconditions, it should be clear that they form 
the forward and backward validation dependency links in the HTN. For the sake of uniformity, 
the set of validations of type (£,«;,G,rtG), (where G is a goal of the plan) are considered e- 

preconditions of the goal node nc. Similarly, the set of validations (/.n/.Cn,), (where / is a 

fact that is true in the input state of the plan) are considered e-conditions of the input node /»/. 

§2.5. P -Conditions (Persistence Conditions): P-conditions of a node n correspond to the 
protection intervals of the HTN that are external to R (n), and have to persist over some part of 
R(n) for the rest of the plan to have a consistent validation structure. We define them in the 
following way: 

A validation v,: (£, ns, C, nd)e\ is said to intersect the sub-reduction R(n) below a 

node n (denoted by "v,- ® /?(«)") if there exists a leaf node n e R(n) such that n falls 
between ns and nd for some total ordering of the tasks in the HTN. In other words, 

Vi:(E,n,,C,nd)®R(n) iff  §(n,<n<nd) 

Using the definition of the validation, we can re-express this as 

'3/t'e R(n)s.t. children(ny=0 A 

(n,<n'<nd V n, / n' V nd / n') 

(Note: Given that ns<nd, the only cases in which Q (n,<n'<nd) are (i) n' is already totally 

ordered between ns and nd, i.e., U(n,<n'<nd) or (ü) n'<nd A n'/n, or (iii) 

ns<n' A n' ffnd or O'v) n' f n, A n' fnd. Using the transitivity of "<" relation, we can sim- 

plify this disjunction to n,<n'<nd V n, ff n'\J nd /n'. ) 

Vi:(E,ns,C,nd) ® R(n) iff 
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A validation v,: (E, ns, C, nd)e\ is considered a p-condition of a node n iff v, inter- 

sects R(n) and neither the source nor the destination of the validation belong to /?(«). Thus, 

P-conditions(n) = {v,;: (E, ns, C, nd) |v,; <= V; n,,nd4 R(n); V; ® R(n)} 

From this definition, it follows that if the effects of any node of R(n) violate the validations 
corresponding to the p-conditions of n, then there will be a potential for harmful interactions. 
As an example, the p-conditions of the node «3 in the HTN of Figure 2 will contain the valida- 

tion (On(B ,C ),n l5,On(B ,C),nG) since the condition On(B,C), which is achieved at nI5 

would have to persist over R(n-}) to support the condition (goal) On(B,C) at tiQ. The p- 
conditions are useful to gauge the effect of changes made at the sub-reduction below a node on 
the validations external to that sub-reduction. They are of particular importance in localizing 
the changes to the plan during refitting [15]. 

From the definition of p -conditions, the following relations follow: 

(1) p-conditions(ni) = p-conditions(nc) = 0. 

(2) When n is a leaf node, (i.e., children(n)=0), R(n) will be [n}, and the definition of p- 

conditions(n) can be simplified as follows. From the definition of ®, 

v,:(£, ns, C, nd)® [n] & ns /n V nd /n \J (ns<n<nd) a -,(n<ns V n>nd) 

and, thus when n is a leaf node 

P-conditions(n) = {v,: (E, ns, C, n^lv.eV; n,*n;nd*n; —in<ns V n>nd)) 

(3) If    nc e children(/»),     and    ve: (£, ns,C, nd) e p-conditions{nc),    then    vc e p- 

conditions{n) iff ns,nd 4 R(n). This follows from the fact that ifvc®R(nc) then 

3«' e R(nc) which satisfies the ordering restriction of "© ". Since /?(nc)c R(n), we 

also have n' e R(n) and thus vc ®R(n). So, as long as ns,nd4R(n), vc will also be a 

p-condition of n. 

(4) If n is not a leaf node and v € p-conditions{n) then 3nc e children(n) s.t. v e p- 

conditions{nc). This follows from the fact that for v to be a p-condition of n, there 

should exist a leaf node n' belonging to R(n) such that the ordering restriction of the 
"® " relation is satisfied. But, from the definition of sub-reduction, any leaf node of 
R (n) should also have to be a leaf node of the sub-reduction of one of its children. So, 
3«c e children(n) s.t. n' e R(nc). Moreover, as the source and destination nodes of v 
do not belong to R(n), they will also nol belong to R(nc). 

These relations provide a way of computing the p-conditions of a non-leaf node from the p- 
conditions of its children, which will be exploited in computing the annotations. 

§2.6. Validation States: If n is a primitive task belonging to the HTN, then we define struc- 
tures called preceding validation state, Ap(n), and succeeding validation state, A'(n), as fol- 

lows: 
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Ap(n) = e-preconditions(n) <Jp-conditions(n) 

A*(n) = e-conditions(n) KJp-conditions(n) 

Thus, the validation states Ap(n) and A'(n) are collect "cms of validations that should be 
preserved by the state of the world preceding and following the execution of task n, for the 
rest of the plan to have a consistent validation structure. For example, the plan can be success- 
fully executed from any state W of the world such that 

Vv:(E,ns,C,nd)e A'{n,). W\-E 

Thus the validation states can be used to gauge how a change in the expected state of the 
world will affect the validation structure of the plan. This is useful both in reuse, where an 
existing plan is used in a new problem situation, and in replanning, where the current plan 
needs to be modified in response to execution time expectation failures. The validation states 
can be seen as a generalization of STRIPS' triangle tables [6], for partially ordered plans. 

The validation states also provide a clean framework for execution monitoring for par- 
tially ordered plans. If EXEC denotes the set of actions of the plan P that have been executed 
by the agent until now, and W denotes the current world state, then the set of actions of the 
plan that may be executed next, £(/\W\EXEC), is computed as (see [20]): 

£(/M*\EXEC) = [n, \primitive(ne) AVv:(E,n,,C,nd) e Ap(ne) s.t. nd <* EXEC, W\-E] 

As long as the agent executes any of Üv* actions in £(/>,W,EXEC) next, it is assured of follow- 
ing the plan, while taking into account any unexpected changes in the world state. When 
E(P,W,EXEC)=0, replanning (or modification of the current plan P) will be necessitated (see 

[20]). 

2.3. Computing Annotations 
In the PRIAR framework, at the end of a planning session, the HTN showing the development of 
the plan at various levels of abstraction is retained, and each node of the HTN is annotated with 
the following information: (1) Schema (n), the schema instance that reduced node n (2) 

Orderings(n), the ordering relations that were imposed during the expansion of n (see §1.2)3 

(3) e-preconditions^) (4) e-conditions(n), and (5) p-conditions(n). 

Schema(n) and Orderings(n) are remembered   in a straight forward way during the 
HI planning itself. The rest of the node annotations are computed in two phases: First, the annota- 

ll tions for the leaf nodes of the HTN are computed with the help of the set of validations4, V, 
H and the partial ordering relations of the HTN. Next, using relations between the annotations of a 

m 

m 

;-, 

W§ ' This information is useful for undoing task reductions during plan modifications; see section 3.2.1. Ill 4 As mentioned previously, the set of validations can be computed directly from the set of protection intervals 
associated with the plan. Most hierarchical planners keep an explicit record of the protection intervals underlying 
the plan. NONUN [30], for example, maintains this information in its GOST data structure. 
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node and its children, the annotations are propagated to non-leaf nodes in a bottom up 
breadth-first fashion. The exact algorithms are given in [13], and arc fairly straightforward to 
understand given the development of the previous sections. If NP is the length of the plan (as 

measured by the number of leaf nodes of the HTN), the time complexity of annotation computa- 
tion can be shown to be 0(Np) [13]. Note that the ease of annotation computation is to a 

large extent an advantage of integrating planning and plan modification, as all the relevant 
information is available in the plan-time datastructures. With respect to storage, the important 
point to be noted is that PRIAR essentially remembers only the HTN representing the develop- 
ment of the plan and not the whole explored search space. If the individual validations are 
stored in one place, and the node annotations are implemented as pointers to these, the increase 
in storage requirements (as compared to the storage of the un-annotated HTN) is insignificant 
This small increase in the storage requirements can be justified in light of the multiple uses of 
the stored informatioa 

While the procedures discussed above compute the annotations of a HTN in one-shot, 
often during plan modification, PRIAR needs to add and remove validations from the HTN one at 

a time. To handle this, PRIAR also provides algorithms (called Add-Validation and 
Remove-Validation ) to update node annotations consistently when incrementally adding or 
deleting validations from the HTN [13]. PRIAR uses these procedures to re-annotate the HTN and 
to maintain a consistent validation structure after small changes are made to the HTN during the 
modification process. They can also be called by the planner any time it establishes or 
removes a new validation (or protection interval) during the development of the plan, to 
dynamically maintain a consistent validation structure. The time complexity of these algorithms 
is 0(NP). Whenever these procedures add or remove a validation, they also update the protec- 
tion intervals (IT) of the HTN appropriately. 

3. Modification by Annotation Verification 
We will now turn to the plan modification process, and demonstrate the utility of the annotated 
validation structure in guiding plan modification. Throughout the ensuing discussion, we will 
be following the blocks world example case of modifying the plan for the three block stacking 
problem 3BS (i.e., R°= 3BS) shown on the left side in Figure 3 to produce a plan for a five 

block stacking problem S5BS15 (i.e., Pn- S5BS1), shown on the right side. We shall refer to 
this as the 3BS-*S5BS1 example. 

3.1. Mapping and Interpretation 
In PRIAR, the set of possible mappings between [P°JR°] and P" are found through a partial 
unification of the goals of the two problems. There are typically several semantically consistent 
mappings between the two planning situations.   While the PRIAR modification framework 

s It may be interesting to note that S5BS1 contains in instance of what is known as the Sussman Anomaly [3] 
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Figure 3. 3BS-»S5BS1 Modification problem 

would be able to succeed with any of those mappings, selecting the right mapping could con- 
siderably reduce the cost of modification. The mapping and retrieval methodology used by 
PRIAR [13,17] achieves this by selecting mappings based on the number and type of incon- 
sistencies that would be caused in the validation structure of R°. While the details of this stra- 
tegy are beyond the scope of this paper, a brief discussion appears in section 3.4.2. For the 
present, we shall simply assume that such a mapping is provided to us. (It should be noted 
that the mapping stage is not important when PRIAR is used to modify a plan in response to 
incremental changes in its specification, as is the case during incremental planning or replan- 

ning for example [20]) 

The purpose of the interpretation procedure is to map the given plan, R" along with its 
annotations into the new planning situation P", marking the differences between the old and 
new planning situations. These differences serve to focus the annotation verification procedure 
(see section 3.2.1.) on the inconsistencies in the validation structure of the interpreted plan. 
Let /" and G° be the partial descriptions corresponding to the required initial state, and the set 
of goals to be achieved by R" respectively. Similarly, let /" and G" be the corresponding 
descriptions for the new problem P". The interpreted plan R' is constructed by mapping the 
given plan R° along with its annotations into the new problem situation, with the help of the 
mapping a. Next, the interpreted initial state /', and the interpreted goal state, G' are com- 
puted as /' = /"U/°a and G' = CUCcc (where "•" refers to the operation of object sub- 
stitution). Finally, some facts of /' and G' are marked to point out the following four types of 

differences between the old and new planning situations: 

A description (fact) / e /' is marked an out fact iff (f e I"a) A (/" H- f). (1) 

(2) 

(3) 

(4) 

A description (fact) / e /' is marked a new fact iff (f e /") A (/° a H-f). 

A description (goal) g e G1' is marked an extra goal iff (g<t G"a) A (g e G"). 

A     description    (goal)     (g e G')    is    marked    an    unnecessary    goal    iff 
(g e  G°a) A (g* G"). At the end of this processing, Ä\ /'' and G1' are sent to the 
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annotation verification procedure. 

3.1.1.  Example 

Let us assume that the mapping strategy selects a = [A -»AT JB -»/ ,C -»/ ] as the mapping from 
3BS to S5BS1. Figure 4 shows the result of interpreting the 3BS plan for the S5BS1 problem. 
With this mapping, the facts Clear (L) and On(K .Table), which are true in the interpreted 3BS 
problem, are not true in the input specification of S5BSI. So they are marked out in /'. The 

facts Clear (L), On (M,Table), On (I,Table), On(LM) and On(KJ) are true in S5BS1 but 
not in the interpreted 3BS. These arc marked as new facts in /'. Similarly, the goals 

On (LA) and Clear (A/) of S5BS1 are not goals of the interpreted 3BS plan. So, they are 
marked extra goals in C. There are no unnecessary goals. 

3.2. Annotation Verification and Refit Task Specification 

At the end of the interpretation procedure, /?' may not have a consistent validation structure 
(see §2.2) as the differences between the old and the new problem situations (as marked in /' 
and G') may be causing inconsistencies in the validation structure of/?'. These inconsisten- 
cies wil! be referred to as applicability failures, as these are the reasons why /?' cannot be 
directly applied to P". The purpose of the annotation verification procedure is to modify /?' 
such that the result, /?", will be a partially reduced HTN with a consistent validation structure. 

The annotation verification procedure achieves this goal by first localizing and character- 
izing the applicability failures caused by the differences in /' and G', and then appropriately 
modifying the validation structure of /?' to repair those failures. It groups the applicability 
failures into one of several classes depending on the type of the inconsistencies and the type of 
the conditions involved in those inconsistencies. Based on this classification, it then suggests 
appropriate repairs. The repairs involve removal of unnecessary parts of the HTN and/or addi- 
tion of non-primitive tasks (called "refit tasks") to establish missing and failing validations. In 
addition to repairing the inconsistencies in the plan validation structure, the annotation 
verification process also uses the notion of p -phantom-validations (see below) to exploit any 
serendipitous effects to shorten the plan. Figure 5 provides the top level control structure of 
the annotation verification process. 

The individual repair actions taken to repair the different types of inconsistencies are 
described below; they make judicious use of the node annotations to modify /?' appropriately. 
The specifications of the exact procedures used by all these modification actions can be found 
in [13]. 

3.2.1. Unnecessary Validations—Pruning Unrequired Parts 

If the supported condition of a validation is no lonjer required, then that validation can be 

removed from the plan along with all the parts of the plan whose sole purpose is supplying 

those validations. The removal can be accomplished in a clean fashion with the help of the 
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Procedure Annotation-Verification () 
1 input: R': Interpreted plan, /': Interpreted input suite, C: Interpreted goal smtc 
2 begin 
3 (breach g e G' s.t. g is marked as an unnecessary-goal 
4 do find v:{E,n,,CjiG) e Af (nG) s.t. C =g 
5 Prune-Va!idation(y) od 
6 foreach g e G' s.t. g is marked as an extra-goal 
7 do Repair-Missing-Validaiion(g -.condition, nc \node) od 
8 foreach / e /' j.f. / is marked as an out-fact 
9 do foreach v :(E jt, ,C jtd) e A' (n,) s.t. E =f 

10 do if £' e /' s.t. £' is marked nw A £'|-C  f*Verificaion*/ 

11 then do Remove-Validation{v) 
12 Add-Vali4ation{? ':(£ >, ,C ^)) od 
13 elseif ope (C "^Precondition 
14 then Repair-Failing-PreconcUtion-Validation(v) 
15 elseif type (C)=Phantom  f*nj is a phantom node*/ 
16 then Repair-Failing-Phantom-Validation{v) 
17 elseif rype (C )=Filter-Condiiion 
18 then Repair-Failing-Filter-Condition-Validatwn(y)oA od 
19 foreach v :(£,«, ,C,«,,) e Vi.i. 
20 /!,#/!/ A £ 6 /'A  E is marked new in /' I* checking for serendipitous effects*! 
21 do Exploit-P-Phantom-Validation(v) od 
22 end 

I   ■:) 

Figure S. Annotation-Verification Procedure 

annotations on R': After removing an unnecessary validation from the HTN (which will also 
involve incrementally re-annotating the HTN, see section 2.3), the HTN is searched for any node 
n, that has no e-conditions. If such a node is found, then its sub-reduction, R(nv), has no 

useful purpose, and thus can be removed from the HTN. This removal turns the e -preconditions 
of /iy into unnecessary validations, and they are handled in the same way recursively. 

The procedure Prune-Validation in Figure 6 gives the details of this process. After 
removing the unnecessary validation v from the plan, it checLs to see if there are any sub- 
reductions that have no useful effects (lines 3-5). (Because of the explicit representation of the 
validation structure as annotations on the plan, this check is straightforward.) If there are such 
sub-reductions, they have to be removed from the HTN (lines 6-16). This involves removing 
all the internal validations of that sub-reduction from the HTN Qines 7-8), and recursively prun- 
ing the validations corresponding to the external preconditions of that sub-reduction Gines 9- 
10). This latter action is to ensure that there won't be any parts of the HTN whose sole pur- 
pose is to supply validations to the parts that are being removed. The Remove-Validation 
procedure (line 8) not only removes the given validation, but also updates the validation struc- 
ture (V) and the protection intervals (Tl) of the HTN consistently. Finally, the sub-reduction is 
unlinked from the HTN (lines 12-14), and the partial ordering on the HTN (O) is updated so 
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Procedure Prune-Validation (v:(£,n.,C/ij),HTN':(P :(T,0 JI) J* />}) 
1 begin 
2 K<rmovr-Vfl/:da/:'0n(v) 
3 if e -conditions(i, )=0 
4 then do find n e {n,) '«J ancestors{n,) 5.f. 
5 c -conditions(n ) = 0Ae -conditions(paren/ (n » * 0 
6 /*Remove the sub-reduction below n '*/ 
7 foreach n' e R (n) s.t. children (n >0 
8 do forc3ch v' e e<onditions(n') 
9 do Rerwve-validatien{v *) od 

10 foreach v" e  e-preconditions^) 
11 do Prune -Validation (v ") od 
12 /* unlinking R (n) from HTN */ 
13 T'*-T'-R(n) 
14 r«-r-Ä(n) 
15 D *-D-[d\d e D Ad cfl(n)) 
16 Update-Orderings(0,R(n)) od fi 
17 end 

Figure 6. Procedure for repairing unnecessary validations 

that the ordering relations that were imposed because of the expansions involved in R (n) are 
retracted. This backtracking is accomplished with the help of the orderings field of each node 
in R(n) (see section 2.3) which stores the ordering relations that were imposed because of the 
expansion below that node. The procedure involves: (i) Retracting from 0 all the ordering 
relations that are stored in the orderings field of the removed nodes (R(n)), and («) Appropri- 

ately redirecting6 any remaining ordering relations of O involving the removed nodes (these 
correspond to the orderings that were inherited from the ancestors of n; see §1.2). 

The structure of the HTN at the end of this procedure depends to a large extent on the 
importance of the validation that is being removed (that is, how much of the HTN is directly or 
indirectly present solely for achieving this validation). The Prune-Validation procedure 
removes exactly those parts of the plan that become completely redundant because of the 
unnecessary validation.  It will not remove any sub-reduction that has at least one «-condition \ V 
(corresponding to some useful effect). Many previous plan modification strategies (such as 
[6,9]) did not have this flexibility. Explicit representation of the validation structure makes 
this possible in PRIAR'S framework. There is, however, a trade-off involved here: the strategy 
adopted by the Prune-Validation procedure is appropriate as long as the goal is to reduce the 
cost of plarjiing (refitting). However it should be noted that if the cost of execution of the 
plan were paramount, then it would be necessary to see if the remaining useful effects of the 
sub-reduction could be achieved in an alternate way that would incur a lower cost of executioa 
To take an extreme example, suppose the plan R" achieves two of its goals, taking a flight and 
reading a paper, by buying a paper at the airport If R" is being reused in a situation where 

* To a sibling of n in case of pruned reduction, and to rt in tfie case of a replaced reduction (see 3.13). 
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the agent does not have to take a flight, it will be better to satisfy the goal of buying the paper 

in an alternate way, rather than by going to the airport. This type of anaJysis can be done with 

the help of the 'levels' of validations (sec section 2.1): We might decide to remove a sub- 

reduction R(n) and achieve its useful effects in an alternate way if the levels of e-conditions of 

n which are removed arc 'significantly' higher than the levels of the remaining e-conditions of 

n. PRIAR currently does not do this typo of analysis while pruning a validation. 

3.2.2. Missing Validations—Adding Tasks for Achieving Extra Goals 

If a condition G of a node nd is not supported by any validation belonging to the set of vali- 

dations of the plan, V, then there is a missing validation corresponding to that condition-node 

pair. Since, an extra goal is any goal of the new problem that is not a goal of the old plan, it 

is un-supportcd by any validation in R'. The general procedure for repairing missing valida- 

tions (including the extra goals, which are considered conditions of na) is to create a refit task 

of the form nm.Achicve[G], and to add it to the HTN in such a way thai rii<nm<nd, and 

parent (nm)=paren'(nd). The new validation vm:(G,nm,G,nd) will now support the condition 

G. Before establishing a new validation in this way PRIAR uses the planner's truth criterion 

(interaction detection mechanisms) to make sure whether that validation introduces any new 

failing validations into the plan (by causing harmful interactions with the already established 

protection intervals of the plan). The incremental annotation procedures arc then used to add 

the new validation to the HTN. Notice that no a priori commitment is made regarding the 

order or the way in which the condition G would be achieved; such commitments are made by 

the planner itself during the refitting stage. 

3.2.3. Failing Validations 

The facts of /' which are marked "out" during the interpretation process, may be supplying 

validations to the applicability conditions or goals of the interpreted plan /?'. For each failing 

validation, the annotation verification procedure first attempts to see if that validation can be 

re-established locally by a new effect of the same node. If this is possible, the validation 

structure will be changed to reflect this. A simple example would be the following: Suppose 

there is a condition Greater(B,7) on some node, and the fact Equal(B,\0) in the initial state 

was used to support that condition. Suppose further that in the new situation Equal(B, 10) is 

marked out and Equal (B,S) is marked new. In such a case, it should be possible to establish 

the condition just by redirecting the validation to Equal(B,%). 

When the validations cannot be established by such local adjustments, the structure of the 

ITN has to be changed to account for the failing validations. The treatment of such failing 

validations depends upon the types of the condition» that are being supported by the validation. 

We distinguish three types of validation failures—validations supporting preconditions, phan- 
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torn goals7 and filter conditions respectively—and discuss each of them in turn below. 

3.2.3.1. Failing Precondition Validations 

If a validation v :(£ ,ns ,C ,nd) supporting a precondition of some node in the HTN is found to be 

failing, because its supporting effect E is marked out, it can simply be reachieved. The pro- 
cedure involves creating a -fit task, n^ -Achieve [E Jt to re-establish the validation v, and 

adding it to "-*. HTN in such i way that ns<nv<nd and parent(nv) = parent(nd). The valida- 

tion structure of the plan is updated so that the failing validation v is removed and an 
equivalent validation v':(E,nv,C,nd) is added. (This addition does not introduce any further 

inconsistencies into the validation structure (see section 4.2.1).) Finally, the annotations on the 
other nodes of the HTN are adjusted incrementally to reflect this change. 

32.32. Failing Phantom Validations 

If a validation vp:(E,n,,C ,np) is found to be failing and np is a phantom goal, then vp is con- 

sidered a failing phantom validatioa If the validation supporting a phantom goal node is fail- 
ing, then the node cannot remain phantom. The repair involves undoing the phantomization, so 
that the planner would know that it lias to re-achieve that goal. This step essentially involves 
backtracking over the phantomization decision and updating the HTN appropriately (similar to 

the process done in the Prune-Validation procedure (Figure 6, lines 12-16). Once this change 
is made, the failing validation vp is no longer required by the node np, and so it is removed 

(updating V and IT). 

32.33. Failing Filter Condition Validations 

In contrast to the validations supporting the preconditions and the phantom goals, the valida- 
tions supporting failing filter conditions cannot be reachieved by the planner. Instead, the plan- 
ning decisions which introduced those filter conditions into the plan have to be undone. That 
is, if a validation vf:{E,ns,Cf,nd) supporting a filter condition Cf of a node nd is failing, and 

n' is the ancestor of nd whose reduction introduced Cf into the HTN originally, then the sub- 
reduction R(nr) has to be replaced, and n' has to be re-reduced with the help of an alternate 
schema instance. So as to least affect the validation structure of the rest of the HTN, any new 
reduction of n' would be expected to supply (or consume) the validations previously supplied 
(or consumed) by the . placed reduction. Any validations not supplied by the new reduction 
would have to be re-established by alternate means, and the validations not consumed by the 

I new reduction would have to be pruned.   Since there is no way of knowing what the new 

m •: 

7 The difference between a precondition validation and a phantom goal validation is largely a matter of how 
the corresponding conditions arc specified in the task reduction Schemas. In NONUN terminology [291, the precondi- 
tion validations support the "unsupervised conditions" of a schema, while the phantom goal validations support 
the "supervised conditions" of a schema. 
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reduction will be until the refining time, this processing is deferred until then.8 

The procedure shown in Figure 7, details the treatment of this type of validation failure 

during annotation verification. In line 3, it finds the node n' that should be re-reduced by 

checking the filter conditions of the ancestors of n. Lines 5-18 detail changes to the validation 

structure of the HTN. Any e-conditions of the nodes belonging to R(n') are redirected to n\ if 

they support nodes outside R(n') (lines 6-9). Otherwise, such e-conditions represent internal 

validations of R(n'), and are removed from the validation structure Gine 10). At the end of 

this processing, all the useful external effects of R (n 0 have n' as their source. Similar pro- 

cessing is done for the e -preconditions of the nodes of R(n") (lines 12-18). Finally, all the 

descendants of n' are removed from the HTN (lines 20-22), and the partial orderings of HTN are 

updated to reflect this removal (line 23). Apart from removing the orderings imposed by the 

expansions of nodes in descendents(n'), this step also involves redirecting any ordering rela- 

tions that were inherited from ancestors of n' back to n' (see the discussion in section 3.2.1). 

Procedure Repair-Failing-Filter-Condition-Validation (vf:(Eji,,C,nd), HTN:(/>:(r,0,n),r*/>)) 
1 begin 
2 Remove-Validation{vj) 
3 find n' e Ancestors (nd){J{nd) s.t. C e filter-conditions(n') 
4 /*replace reduction below n '*/ 
5 foreach nc e Rin^s.t. children(nc)=0 
6 do foreach v':(E'ji',,C'ji'd) e e-conditions(nc) 
7 do if v' e e-conditions(n') 
8 then do Remove-Validation(v 0 
9 Add-Validation(y ":(£ 'ji \C '/t 'd) od 

10 else Remove-Validation(v *) 
11 fiod 
12 foreach v':lE'/i'ltC'^i'd) e c-preconditions^) 
13 do 
14 if v' e e -preconditions^ *) 
15 then do Remove-Validation(v') 
16 Add-Validation(v ":(£ >', ,C'/t} od 
17 else Remove-Validationiv1) fi 
18 odod 
19 f unlinking descendentsf.n') from HTN */ 
20 T' f- T'-descendents(nr) 
21 T f- T-descendents (n *) 
22 D «- D-[d\d e D A dz descendents(nt) ) 
23 Update-Orderings(0,descendents(n)) od fi 
24 /*Mark n' as a refit-task of type replace-reduction*/ 
25 T <- T U {/!'} 
26 refit task-type(n') «- "replace-reduction" 
27 end 

Figure 7. Procedure for repairing failing filter condition validations 

* This type of applicability failure is very serious as it may require replacement of potentially large parts of 
the plan being reused, there by increasing the cost of refitting. In [13,17], we show that PRIAR's retrieval and map- 
ping strategy tends to prefer reuse candidates that have fewer applicability failures of this type. 
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Finally, n' now constitutes an unreduced refit-task and so it is added to T (lines 25-26). 
(Notice that a difference between this and the Prune-Validation procedure is that in this case 
the e -preconditions of the replaced sub-reduction are redirected rather than pruned.) 

3.2.4. P -Phantom-Validations—Exploiting Serendipitous Effects 

When R° is being reused in the new planning situation of P", it is possible that after the 
interpretation, some of the validations that R' establishes via step addition can now be esta- 

blished directly from the new initial state. Such validations are referred to as p -phantom vali- 
dations. More formally, a validation vp :(E ,ns ,C ,nd) is considered a p -phantom-validation of 

R' if ns*ni and /" \—E.  Exploiting such serendipitous effects and removing the parts of the 

plan rendered redundant by such effects can potentially reduce the length of the plan. Once 
the annotation verification procedure locates such validations, PR1AR checks to see if they can 
actually be established from the new initial state. This analysis involves reasoning over the 
partially ordered tasks of the HTN to see if through possible introduction of new ordering rela- 
tions, an effect of n7 can be made to satisfy the applicability condition supported by this vali- 
dation. The facilities of typical nonlinear planners can be used to carry out this check. When 
a p-phantom validation vp is found to be establishable from nt, the parts of the plan that are 

currently establishing this validation can be pruned. This is achieved by pruning vp (see sec- 

tion 3.2.1). Currently, we do not allow PRIAR to add steps (c/. white knights [3]) or cause 
new interactions while establishing a p-phantom validation, and exploit the serendipitous 
effects only if doing so will not cause substantial revisions to the plan. 

3.2.5. Example 

Figure 8 shows R", the HTN produced by the annotation verification procedure for the 
3BS-»S5BS1 example. The input to the annotation verification procedure is the interpreted 
plan R' discussed in section 3.1. In this example, R' contains two missing validations 
corresponding to extra goals, a failing phantom validation and a failing filter condition valida- 
tion. The fact On(K,Table), which is marked out in /', causes the validation 
(On(K,Table),ni,On(K,Table),ni^i in R' to fail. Since this is a failing filter condition valida- 

tion9, the reduction that first introduced this condition into the HTN would have to be replaced. 
In this case, the condition On (K,Table) came into the HTN during the reduction of node 
n9:Do[Puton(KJ)]. Thus, the annotation verification process removes R(n9) from the HTN, 

and adds a replace reduction refit task n9:Do[Puton{KJ)]. The e-preconditions of the 

replaced reduction, iflear{K),nltClear{K),n\6i and (C/ear(/),ng,C7e\zr(/),n16) , arc redirected 
such that the refit task n9 becomes their destination. Similarly the e -condition of the replaced 

' We follow the convention of [30] and classify On(K,?x) as a filter condition rather than a precondition. 
Some effects of the plan depend on the binding of ?x and one way of conectly propagating the effects when the 
binding of ?x changes is to treat this reduction-time assumption as a filter condition. 
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reduction, (On(K J),ni6,Or"' M nG) is redirected such that n9 becomes the source. These 

last two steps ensure tha' ible reduction of n9 will be aware of the fact that it is 

expected to supply the e -< and consume r -preconditions of the replaced reduction. 

Next, the fact Ciu ..;, which is marked out in /' causes the validation 
(Clear(l),m,Clear(l),ns) to fail. Since this validation supports the phantom goal node n,, the 

annotation verification procedure undoes the phantomization and converts /15 into a refit task 

n^.Achieve[Clear(/)] to be reduced. Once this conversion is made, n5 longer needs the failing 

validation from nt, and it is removed. 

Finally, the goals Clear(M) and On(LJC) of G' are extra goals, and are not supported 
by any validation of the HTN. So, the refit tasks n\ö-Achieve[On(LJ()] and 
n u Achieve [Clear (M)] are created and added to the HTN, in parallel to the existing plan such 
that n/<nl0<nG and nj<nu<nc. The node «10 now supports the validation 

(pn(LJ£),ni0,On(LJC),riG) and the node nu supplies the validation 
(Clear(M),nu,Clear(M),nG). 

Notice that the HTN shown in this figure corresponds to a partially reduced task network 
which consists of the applicable parts of the old plan and the four refit tasks suggested by the 
annotation verification procedure.   It has a consistent validation structure, but it contains the ^ 
unreduced refit tasks «lo, «u, «9 and «5. 

3.2.6. Complexity of Annotation Verification 

In [13], we show that the repair actions involved in the annotation verification process can all 
be carried out in O(Np), except for the steps involving interaction detection when new valida- 
tions are introduced during the repair of missing validations and p -phantom validations. This 
latter step essentially involves checking for the truth of an assertion in a partially ordered plan. 
It is known that under the TWEAK representation (which does not allow conditional effects and 
state independent domain axioms), this step can be carried out in 0(Np) time [3]. Thus, the 

worst case complexity of the repair actions is 0(Np). Since there cannot be more than IVI 

failing validations in a plan, the complexity of the overall annotation verification process itself 
is 0(\V\Np) (where IVI < ^NP as mentioned previously). Thus, the annotation verification 

process is of polynomial (O (Np)) complexity in the length of the plan. 

If 3.3. Refitting 
f ,'<! At the end of the annotation verification, R" represents an incompletely reduced HTN with a 

consistent validation structure.  To produce an executable plan for P", Ra has to be com- 
pletely reduced. This process, called refitting, essentially involves reduction of the refit tasks 
that were introduced into Ra during the annotation verification process. The responsibility of 

tfffl    • reducing the refit tasks is delegated to the planner by sending Ra to the planner An important 
ftl'lf difference between refitting and from-scratch (or generative) planning is that in refitting, the 
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planner starts with an already partially reduced HTN.  For this reason, solving P" by reducing 
R" is less expensi/c on the average than solving P" from scratch. 

The proccdurj used for reducing refit tasks is fairly similar to the one the planner nor- 
mally uses for reducing non-primitive tasks (see section 1.4), with one important extension. 
An important consideration in refitting is to minimize the disturbance to the applicable parts of 
Ra during the reduction of the refit tasks. Ideally, it should leave any already established pro- 
tection intervals of HTN unaffected. To ensure this conservatism of refitting, the default 
schema selection procedure is modified in such a way that for each refit task, nr, it selects a 

schema instance that is expected to give rise to the least amount of disturbance to the valida- 
tion structure of Ra. The annotations on nr guide this selection by estimating the effect of 

the reduction of nr on the rest of the plan. (Section 3.4.1 contains a brief discussion of this 

heuristic control strategy.) Once the planner selects an appropriate schema instance by this stra- 

tegy, it reduces the refit task by that schema instance in the normal way, detecting and resolv- 

ing any interactions arising in the process. 

A special consideration arises during the reduction of refit tasks of type replace- 

reduction. After selecting a schema instance to reduce such refit tasks, PRIAR might have to do 
some processing on the HTN before starting the task reduction. As we pointed out during the 
discussion of failing filter condition validations (section 3.2.3.3), when a node n is being re- 
reduced it is expected that the new reduction will supply all the e-conditions of n and will con- 
sume all the e-preconditions of n. If the chosen schema instance does not satisfy these expec- 
tations, then the validation structure of the plan has to be re-adjusted. PRIAR does this by com- 
paring the chosen schema instance, S,-, and the e-conditions and e-preconditions of node n 

being reduced, to take care of any validations that S; does not promise to preserve. It will (/) 

add refit tasks to take care of the e-conditions of n that are not guaranteed by S,, and («) 

prune parts of the HTN whose sole purpose is to achieve e-preconditions of n that are not 
required by 5,. 

An alternative way of treating the failing filter condition validations, which would obviate 
the need for this type of adjustment, would be to prune the e-preconditions of n at the time of 
annotation verification itself, and add separate refit tasks to achieve each of the e-conditions of 
n at that time. However, this can lead to wasted effort on two counts: 

(1) Some of the e-preconditions of n might actually be required by any new reduction of n, 
and thus the planner might wind up reachieving them during refitting, after first pruning 
them all during annotation verification. 

(2) Some of the e-conditions of n might be promised by any alternate reduction of «, and 
thus adding separate refit tasks to take care of them would add unnecessary overhead of 

reducing the extra refit tasks. 

In contrast, the only possible wasted effort in the way PRIAR treats the failing filter condition 
validations is that the annotation verification procedure might be adding refit tasks to achieve 
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validations (say to support the conditions of the parts of the plan which provide e- 
preconditions to the replaced reduction) that might eventually be pruned away during this latter 
adjustment. 

3.3.1. Example 

Figure 9 shows the hierarchical task reduction structure of the plan for the S5BS1 problem that 
PRIAR produces by reducing the annotation-verified task network (shown in Figure 8). (The 
top down hierarchical reductions are shown in left to right fashion in the figure. The dashed 
arrows show the temporal precedence relations developed between the nodes of the HTN.) The 
shaded nodes in the figure correspond to the parts of the interpreted plan R' that survive after 
the annotation verification and refitting process, while the white nodes represent the refit tasks 
added during the annotation verification process, and their subsequent reductions. 

During refitting, the planner reduces the refit task Ac.iieve[Clear(l)] by putting K on 
Table, realizing that even though putting K on I looks locally optimal, it causes more distur- 
bance to the validation structure of R" (see below). The extra goal refit task 
Achieve [Clearßl)] is reduced by putting L on K; and this decision leads to the achievement 
of the other extra goal refit task Achieve[On(LJC)] as a side-effect. As K is on Table by this 
point, the planner finds that the replace reduction refit task Do[Puion(KJ)] can after all be 
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reduced by another instantiation of the same schema that was used to reduce it previously10. 

3.4.  Issues of Control 
In this section we will briefly address the issues of control in PRIAR's plan modification pro- 
cess. The purpose is to explain the role played by the plan validation structure in controlling 
refitting and retrieval. For the detailed development of these control strategics, the reader is 
referred to [15,17,13]. 

3.4.1. Conservative Control of Refitting 

To derive maximum benefits from modification and reuse, and to prevent the possibility of the 
refitting process degenerating into from-scratch planning, care must be taken to ensure that the 
reduction of the refit tasks would cause minimum disturbance to the parts of the plan that are 

already applicable in the new situation. PRIAR exploits the annotated validation structure of the 

plan to estimate the disturbance caused by the reductions of refit-tasks to the rest of the plan, 

and uses this estimate to select among the schema instance choices for reducing the refit tasks. 

To estimate the disturbance caused by individual task reduction choices, PRIAR develops 
the notion of the task kernel of a refit task. The task kernel encapsulates the set of validations 
that have to be preserved by any reduction of that node to leave the validation structure of R" 
undisturbed; it is defined in terms of the node annotations. The reduction choices are ranked 
by the degree to which their applicability conditions and effects preserve the validations of the 
task kernel of the refit task. In the 3BS-»S5BS1 example above, this control strategy recom- 
mends that the planner reduce the refit task A [Clear(I)] by putting K on Table rather than on 
L, M, or J (even though the last choice would appear locally optimal as it achieves the extra 

goal On(KJ) n), because this causes the least amount of disturbance to the validation struc- 
ture of R". Similarly, for the refit task Achieve [Clear (A/)], the control strategy recommends 
reduction by putting L on K rather than on Table, the other available choice. This allows it to 
achieve the second extra goal refit task as a side effect. A detailed description of this control 
strategy is beyond the scope of this paper, and can be found in [15,13]. 

3.4.2. Controlling Mapping 

While mapping is not a serious problem if the current plan itself is being modified due to some 
change in the specification, it becomes an important consideration in the case of modification 
during plan reuse. There are typically several semantically consistent mappings between 
objects of the two planning situations, P° and P", and the selection of the right mapping could 

10 If the planner chooses to reduce this refit task in the beginning, then it would have bound the location of K 
is on / at that time. Then, since the location of K changes during the planning, the task would have to be re- 
reduced. Such a re-reduction should not be surprising as it is a natural consequence of hierarchical promiscuity al- 
lowed in most traditional hierarchical planners (see [36] for a discussion). 

11 This locally inoptimal choice is the characteristic of the sussman anomaly. Putting KonJtt this juncture 
would lead to backtracking, as it affects the executability of the Pulon(JJ) action. 
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considerably reduce the cost of modifying the chosen plan to conform to the constraints of the 
new problem. To do such selection, the matching metric should be able to estimate the 
expected cost of modifying R° to solve P". In PRIAR modification framework, the cost of 
refining R" to Pn can be estimated by analyzing the degree of match between the validations 

of R° and the specification of P", for various mappings (a,}. We have developed a heuristic 

ordering strategy which ranks the different mappings based on the number and the type of vali- 

dations of the old plan that are dependent on the input state and goal state features of the old 
planning situation, which will be preserved in the new problem situation. The rationale behind 
this heuristic—that the cost of refitting depends both on the number and type of validations of 
the old plan that have to be re-established in the problem situation—should be intuitively obvi- 
ous given our discussion of annotation verification. In our example, this strategy allows PRIAR 
to choose the mapping [A->LJ3-*K,C^>J] over the mapping [A-*Kß->J,C->I] while 
reusing the 3BS plan to solve the S5BS1 problem. In is instructive to note that while this stra- 
tegy is used to choose between two reuse candidates corresponding to the same plan with 
different mappings in the current example, in general the strategy can also choose between 
reuse candidates using different plans. By basing retrieval on the appropriateness of using the 
old plan in the new problem situation, this strategy strikes a balance between purely syntactic 
feature-based retrieval methods, and methods which require a comparison of the solutions of 
the new and old problems to guide the retrieval (e.g. [2]). Further details of this retrieval and 
mapping strategy can be found in [17,13]. 

4.  Analysis and Evaluation of PRIAR 

4.1. Empirical Evaluation 
The PRIAR modification framework described in this paper has been completely imple- 

mented in COMMON LISP and runs as compiled code on a Texas Instruments EXPLORER-n Lisp 
Machine. The hierarchical planner used in PRIAR is a reimplemented version of NONUN 
[30,7]. Performance evaluation experiments were conducted in an extended blocks world 
domain (see Appendix B for the domain specification) to quantify the savings in planning 
effort afforded by the modification framework. (PRIAR is also being adapted to provide an 
incremental planning capability for process planning in concurrent engineering environments. A 
prototype version is currently operational; see [21] for details.) The evaluation experiments 
consisted of solving several blocks world problems by reusing a range of similar to dissimilar 
stored plans. In each experiment, statistics were collected for solving the new problem from 
scratch and for solving it by modifying a given plan. A comprehensive listing of these statis- 
tics can be found in [13]. 

The cost of retrieval was factored out in all these experiments by providing PRIAR with a 
specific existing plan R" to be reused while solving the new problem P". However, the 
appropriate mapping, a, between R° and P" is still chosen by the retrieval procedure. Such a 
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testing strategy is motivated by our desire to measure the flexibility of th-? modification frame- 
work by forcing PRIAR to solve P" by reusing different R° 's. 

The problems used in these experiments arc all from the blocks world. Problems 3BS, 
4BS, 6BS, 8BS etc. are block stacking problems with three, four, six, eight, etc. blocks respec- 
tively on the table in the initial state, and stacked on top of each other in the final state. Prob- 
lems 4BS1, 5BS1, 6BS1 etc. correspond to blocks world problems where all the blocks arc in 
sr-.ne arbitrary configuration in the initial state, and stacked in some order in the goal-state. In 
particular, S5BS1 corresponds to the example that we discussed in the previous sections. A 
complete listing of the test problem specifications can be found in [13]. 

Table 1 presents representative statistics from the experiments. It compares planning 

times (measured in cpu seconds), the number of task reductions, and the number of detected 

interactions, for from-scratch planning and for planning with reuse, in some representative 

experiments. The second entry in Table 1 corresponds to the 3BS-»5SBS1 example discussed 

in the previous sections. The last column of the table presents the computational savings 
gained through reuse as compared to from-scratch planning (as a percentage of the from 

R°->Pn P" From Scratch Reuse R° Savings 
(%) 

3BS-»4BS1 [   4.05, 12«, 5/ ] [  2.45, 4«. 1/ ] 39 

3BS-»S5BS1 [  12As, 17n, 22/ ] [ 5.25, 8«, 12/ ] 58 

5BS-»7BS1 [ 38.65,24«,  13/] [ 11.15, 12«, 19/ ] 71 

4BS1->8BS1 [  793s, 28«,   14/] [ 22.25, 18«, 18/ ] 71 

5BS-»8BS1 [  79-35,28«,   14« ] [ 10.15, 14«, 7/ ] 87 

6BS->9BS1 [ 184.6s, 32«,   17/ ] [ 18.15, 17«, 17/ ] 90 

10BS-»9BS1 [ 184.6s, 32«,  17/ ] [  6Ss, 5«, 2/ ] 96 

4BS-»10BS1 [401.55,36«,   19/] [ 52.95, 30«, 33/ ] 86 

8BS-»10BS1 [ 401 Ss, 36«,   19/ ] [ 14.55, 12«, 7/ ] 96 

3BS-»12BS1 [ 1758.65, 44«, 23/ ] [   77.15, 40«, 38/] 95 

5BS-»12BS1 [ 1758.6$, 44«, 23/ ] [   51.85, 32«, 26/] 97 

10BS-»12BS1 [ 1758.65, 44«, 23/ ] [    21.25, 13«, 7fl 98 

Table 1. Sample statistics for PRIAR reuse 
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scratch planning time). 

The entries in the table show that the overall planning times as well as the number of 

task reductions improve significantly with reuse. Tins confirms that reuse and modification in 

the PRIAR framework can lead to substantial savings over generative planning alone. The rela- 

tive savings over the entire corpus of (approximately 70 ) experiments ranged from 30% to 

98% (corresponding to speedup factors of 1.5 to 50), with the highest gains shown for the 

more difficult problems tested. The average relative savings over the entire corpus was 79%12. 

We also analyzed the variation in the savings accrued by reuse in terms of the similarity 

between the problems and the size of the constructed plans. Figure 10 shows the plot of this 

variation. It plot shows the computational savings achieved when different blocks world prob- 

lems are solved by reusing a range of existing blocks world plans. For example, the curve 

marked 7BS1 shows the savings afforded by solving a particular seven-block problem by reus- 

ing several different blocks world plans (shown on the jr-axis). Figure 11 summarizes all the 

individual variations by plotting (in logarithmic scale) the frorn-scratch planning time, and the 

best and worst case reuse planning times observed for the set of blocks world problems used in 

our experiments. It shows an observed speedup of one to two orders of magnitude. 

Apart from the obvious improvement in reuse performance with respect to similarity 

between P* and P°, these plots bring out two other interesting characteristics of the PRIAR 
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12 The cumulative savings were much higher, but they are biased by the higher gains of the more difficult 
problems. 
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rcusc behavior: 

1. Flexibility and Conservatism of Modification: 

As we pointed out earlier, a flexible and conservative modification strategy provides the 

capability to effectively reuse any applicable pans of a partially relevant plan in solving a 

new planning problem. An important characteristic of such a modification strategy is that 

is that as the size of P" increases, the computational savings afforded by FRIAR stay very 

high for a wide range of reused plans with varying similarity. This behavior is brought 

out by the plots in Figures 10 and 11. Consider, for example, the plot for the 12B31 in 

Figure 10. As we go from a dissimilar plan R° = 3BS to a very similar plan R° = 9BS, 

the savings vary between 95% and 98% (corresponding to a variation in the speedup fac- 

tor of 20 to 50). One of the important benefits of a flexible reuse framework is that the 

best match retrieval may not be critical for the utility of plan reuse. This may allow the 

use of simple and computationally efficient retrieval strategies [17]. 

2. Performance improvement with respect to the size of the planning problem: 

An interesting pattern observed in PRIAR's performance is that when it modifies the same 

plan R° to solve several different problems, the computational savings increase with the 

size of the problem being solved. Consider for example the cases of 3BS-»7BS1 vs. 

3BS-+12BS1 in Figure 10. The improvement with size is further characterized by the 

statistics in Table 2, which lists the performance statistics when the 3BS plan is used to 

solve a set of increasingly complex blocks world problems.   This can be explained in 
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R°-> P" Pn From Scratch 

(cpu sec.) 

Reuse R° 

(cpu sec.) 

Savings 

(7c)     speedup 

3BS-»4BS1 4.0 2.4 39            1.6 

3BS-»5BS1 8.4 4.3 49            1.9 

3BS-»7BS1 38.6 15.6 59            2.5 

3BS-»8BS1 79.3 17.4 78           4.6 

3PS-+1UBS1 401.5 71.4 86           5.6 

3BS-*12BS1 1758.6 77.1 95          22.8 

Table 2. Variation of reuse performance with problem size 

terms of the search process in the space of the plans. In hierarchical planning, as the size 
of a planning problem increases, the effective branching factor of the search space also 
increases. For example, for a g goal problem, where the average number of choices for 
reducing a goal in the domain is ¥, the branching factor at the first level will be propor- 

tional to gx^; i.e., the branching factor increases with g13. If ß is the branching factor 
of the search space, A is the operator distance between the problem specification P" and 
the plan R", and A' is the operator distance between the R" and R", then we can quan- 
tify the relative reduction in the explored search space during plan reuse as ß4"^' [23,13]. 
Thus, as ß increases, so will the relative reduction in the search space. Thus, as problem 
size increases, the savings afforded by reuse tend to become more significant. 

4.2. Analysis 
In this section we shall analyze the completeness, coverage, flexibility and efficiency of the 
PRIAR framework. 

4.2.1. Completeness 

To demonstrate completeness, we must show that PRIAR can solve any new planning problem 
by correctly modifying any plan, whose validation structure is describable within its representa- 
tion language. If we assume that the underlying planning strategy is complete, the complete- 
ness of PRIAR can be established by demonstrating that for any given plan A" and a new 

13 Another way of understanding this is that as the size of the the planning problem increases, the number of 
ways of interpreting the modal truth criterion to achieve a goal (in Chapman's model of nonlinear planning [3]) 
also increases. 
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problem P", 1'RIAR provides an HTN with a consistent validation structure to the planner. The 

validation structure based modification is complete, in that it will correctly handle all types of 

applicability failures that may arise during plan modification, arid provide the planner with a 

partially reduced HTN with a consistent validation structure. In particular, our definition of 

inconsistencies (see §2.2) captures all types of applicability failures that can arise due tc a 

change in the specification of the problem; and our annotation verification procedure provides 

methods to correctly modify the plan validation structure to handle each type of inconsistency 

(see section 3.2). 

Proposition:    The HTN at the end of the Annotation-verification procedure is 

a partially reduced plan with a consistent validation structure. 

When a plan is being reused in a new problem situation, the inconsistencies in the validation 

structure originate from the differences in the initial and final state specification; the interpreta- 

tion procedure marks these differences. The overall plan can be seen as a black-box, which 

consumes the validations in the initial validation state A'(nt) and supplies the validations in 

the final validation state Ap(ni). Thus the only way the differen;es in the problem 

specifications can cause inconsistencies in the validation structure of the plan is by affecting 

the validations in A*(nt) and Ap(nG)u. Thus, the annotation-verification procedure would 

only have to check these validations. 

The only ways in which the validations of A'(n,) and Ap{nG) can be affected by the 

changes in the problem specifications are: (i) some validations of A'(nt) fail because of the 

disappearance of their supporting effects, (n) some validations of A"(nG) are not required 

because they are supporting unnecessary goals and finally (Hi) some goals of the new problem 

are not supported by any validations of Ap(nG). These are precisely the cases that are defined 

as the inconsistencies in the validation structure of a plan (in section 2.1). We have seen that 

the annotation-verification process modifies the plan validation structure to take care of each of 

these three possibilities, and also to exploit any serendipitous effects. The repair actions 

involve either removing some parts of the plan, or adding high level non-primitive tasks to the 

plan to re-establish missing or failing validations. To prove that the resulting partially reduced 

HTN has a consistent validation structure, we need only show that the repair actions themselves 

do not introduce any inconsistencies. 

There are three kinds of changes made to the validation structure of R' during these 

repair tasks: (/) some existing validations are removed, («) some existing validations are re- 

directed, or (HI) some new validations are added. We can easily show that PRlAR's methods for 

removal of unnecessary validations, and redirecting validations (to the ancestors of the source 

' v./a 

>M 

:-i 

14 Of course, while taking care of some of the affected validations, the annotation verification procedure might 
prune or redirect some internal validations of the plan (see the procedures for pruning validations arid repairing fail- 
ing filter condition validations). 
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or destination nodes) do not introduce any new inconsistencies. Thus the only remaining case 
is the addition of a new validation. Here too, there are two possibilities: 

(1) When a failing precondition validation v :(£,«/ ,C ,nd) is repaired by adding a new valida- 

tion, vr:(E,nr,C,nd), such that nl<nr<nd. In this case, the only possible inconsistency 

could be failure of vr. For vr to fail, there should exist a node n such that ()(nr<n<nd) 

and effects(n) I £.  Since, n,<nr<nd (see section 3.2.3.1), this will also imply that 

t)(n,<n<nr). That is, v itself could not have been established. Since v was established 

previously, by refutation we know that vr cannot be failing. 

(2) When completely new validations are introduced into HTN to take care of missing valida- 
tions or p -phantom-validations. In these two cases, we have seen that the repair actions 
invoke the planner's truth criterion to make sure that the new validation does not lead to 

the failure of any existing validations. 

Thus, all the repair actions remove the inconsistencies in R', without adding any new incon- 
sistencies. Consequently, the HTN after annotation verification, R", has a consistent validation 

structure.D 

To summarize, the annotation-verification based reuse framework presented here is com- 

plete in the sense that if P" is a problem that PRIAR'S planner can solve from scratch, then 
PRIAR can take any arbitrary previously developed plan, R°, a new problem P" and provide 
R" which can then be reduced by the planner to give a plan for P". This is because we are 
able to list with certainty all the possible inconsistencies that can arise in the validation struc- 
ture of a plan during reuse and provides methods to remove the inconsistencies without intro- 
ducing any new inconsistencies. 

Notice, however, that while the consistency of annotation-verified plan R" allows the 
planner to try to solve for P" by reducing R" rather than starting from scratch, it cannot by 
itself ensure that a plan for P" can be found without backtracking over R". For this latter pro- 
perty to hold, the abstraction used in the task reduction Schemas representing the domain 
should have the "downward solution" property [31] where the existence of an abstract plan 
implies the existence of specializations of this solutions at each lower level (see below). 
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4.2.2.  Coverage 

Here we discuss how well the modification capability provided by our theory covers the range 
of possible plan modification tasks. The validation structure developed here covers the internal 
dependencies of the plans produced by most traditional hierarchical planners. The captured 
dependencies can be seen as a form of explanation of correctness of the plan with respect to 
the planner's own domain model. By ensuring the consistency of the validation structure of the 
modified plan, PRIAR guarantees correctness of the modified plan with respect to the planner. 
However, it should be noted that as the dependencies captured by the validation structure do 
not represent any optimality considerations underlying the plan, the optimality of modification 

35 

KS 



\; ■-'■   " -•'--! 

1% ;■:                ^ 

"■;".■ ■  ■■) 

;?-*v   ■: ;- 

It : :^ 
'.'#■$'■' ■% 

y.;-;:-,y.;;V^ 

f:M ■'!%. 
•A  •      .    ' 

-x- .'■ 

>\3 
#V< 

^.'J-(-:-\' -A:? 

■,:' <1 
,--t^-■ -v-^e 

:V-"i 

< 
$¥£;; 

; *•'■'■  : 

v#-sa 

'  •'! 

^■■J 

is not guaranteed. Further, since the modification is integrated with the planner, failures arising 
from the incorrectness or incompleteness of the planner's own domain model will not be 

detected or handled by the modification theory15 [18]. Of course, these should not be con- 
strued as limitations of the theory, as the goal of the theory is to improve the average case 
efficiency of the planner. 

4.2.3.  Flexibility and Efficiency 

Computational savings in modifying plans in the PRIAR framework stem from the fact that the 
annotation verification process expends a polynomial amount of processing on R' to produce a 
partially reduced HTN, R", which can, on the average, be reduced with exponentially less effort 
compared to planning for P" from scratch. While we cannot expect a reduction in the 
theoretical complexity of planning unless the domain Schemas have the "downward solution 

property" (see above), typically there is a strong performance improvement by starting the 
planner off with Ra. The empirical results discussed in section 4.2.1. provide support to this. 

PRIAR reuse strategy is flexible in that it can effectively modify any existing plan to solve 
any new problem. Flexibility, however, is a double-edged sword—while it improves the cov- 
erage of the modification strategy by allowing a plan to be reused in a wide variety of new 
situations, it also leads to situations where the plan is reused in a totally inapplicable situation. 
In PRIAR, however, this does not pose a serious problem because the annotation verification 
procedure is of polynomial complexity. In the worst case, when none of the steps of R° are 
applicable in the new situation, annotation verification will return a degenerate HTN containing 
refit tasks for all the goals of P". In such extreme cases PRIAR may wind up doing a polyno- 

mial amount of extra work compared to a pure generative planner.16 In other words, the worst 
case complexity of plan modification remains the same as the worst case complexity of genera- 
tive planning. However, on the average, PRIAR will be able to minimize the repetition of plan- 
ning effort (thereby accruing possibly exponential savings in planning time) by providing the 
planner with a partially reduced HTN that contains all the applicable parts of the plan being 
modified, and conservatively controlling refitting such that the already reduced (applicable) 
parts of R" are left undisturbed. The claims of flexibility and average case efficiency are also 
supported by the empirical evaluation experiments that were conducted on PRIAR, as discussed 
in section 4.1. 

li In [19] we discuss some preliminary ideas about dealing with failure of validations established by modules 
external to the planner. 

16 It should also be noted that the mapping and retrieval strategy developed in [17,13] helps in ruling out such 
degenerate cases to a large extent. 
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5.  Comparison to Previous Work 
Early research in plan reuse and replanning was done in conjunction with the work on STRIPS 

planner [6]. The STRIPS' triangle-table based approach to replanning suffered from many limi- 
tations. As we pointed out in section 1, STRIPS was unable to modify the internal structure of 
its remembered macro-operators to suit new problem situations, and consequently could reuse 
them only when either the entire macrop or one of its subsequences was applicable in the 
current situation. Its only response to execution time failures was restarting the plan from an 
appropriate previously executed step. Such a capability is in general not sufficient to provide a 
robust replanning capability, as it is very rare that the execution time failures are so benign as 
to be repaired by restarting the plan from an earlier point. A recent hierarchical linear problem 

solver called ARGO [11] tries to partially overcome the inflexibility of the macro-operator based 
reuse by remembering macro-operators for each level of its hierarchical plan. However, it too 
lacks the capability to modify the intermediate steps of a chosen macro-operator, and is conse- 
quently unable to reuse all the applicable portions of a plan. 

Hayes [9] was the first to suggest the idea of explicitly represented internal dependencies 
for guiding replanning. However, his framework was very domain-specific and the only 
replanning action allowed in it was to delete a part of a plan, thereby permitting the planner to 
reachieve some higher level goals in the hierarchical development of the plan. NONLIN [30,29] 
was the first hierarchical planner to advocate explicit representation of goal dependencies to 
guide planning. Its GOST data structure is essentially a list of protection intervals associated 
with the plan, and is used during the planning to guide the interaction detection and resolution. 
Daniel [5] exploited NONLIN's plan structure to develop a framework for representing decision 
dependencies to aid in backtracking during planning. The intent was to enable NONUN to do 
dependency directed backtracking during plan generatioa While Daniel's research did not 
explicitly consider replanning or reuse problems, it generalized Hayes* notion of decision 

M graphs significantly to capture inter-decision dependencies induced by NONLIN.  However, here 
again, the development was very planner specific. There was neither a formal characterization 
of the remembered dependencies, nor a systematic exploration of their utility in plan 
modification. Recently, Morris et al [24] started exploring the utility of TMS-based data 
dependency methods for representing these decision-graph structures to provide a dependency- 
directed backtracking capability during planning. In the following we discuss the relation 
between PRIAR modification framework and these data dependency methods: 

Any dependency directed plan transformation scheme must be able to handle the follow- 
ing three distinct issues: (i) What choice points would have to be revoked to handle the change 
in the specification or the environment, (ii) How to effectively retract the decisions that were 
made in the context of those choice points, and (Hi) How best to guide the planning after the 
retraction, to satisfy the overall goals. While decision graphs, context layered world-models 
[34] and TMS based data dependency frameworks provide strategies for handling II, they do 
not provide guidance on / and Hi.   In contrast, we have shown that the explicit planner- 
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independent representation of the causa] dependencies of a plan (as its validtaion structure) pro- 

vides a powerful medium for deliberating on what types of modifications are required and how 

to guide the planner in carrying out those modifications. 

Wilkins' framework for guiding replanning and execution monitoring in SIPE [35] comes 

closest to PRIAR'S plan reuse and modification framework in its treatment of applicability 

failures. (For a detailed discussion of how PRIAR's modification framework is used to guide 

and control execution monitoring and replanning, see [20].) SIPE's domain-independent replan- 

ning actions are similar to the repairs to the plan validation structure that are suggested by 

PRIAR's annotation-verification process. However, SIPE does not attempt to explicitly character- 

ize the role played by the individual tasks of the HTN in the validation of the rest of the plan. 

Consequently, some of its replanning actions are planner dependent, and are not stated for- 

mally. In contrast, PRIAR's annotated validation structure gives a clean framework to state the 

replanning actions precisely and explicitly. Another important difference between the 

modification strategies of PRIAR and SIPE is that the latter does not attempt to control the 

replanning once the appropriate replanning actions were suggested to SIPE. As we discussed 

briefly in section 3.4.1 PRIAR employs a heuristic control strategy grounded in the plan valida- 

tion structure for this purpose. 

In contrast to the dependency directed debugging strategies such as [27,8,28] which aim 

to compensate for the inadequacies of the generative planner by debugging the generated plans, 

PRIAR aims to improve the efficiency of planning by ensuring the correctness of modification 

with respect to the planner. The plan debugging strategies proposed in GORDIUS and CHEF use 

an explanation of the correctness of the plan with respect to an external (deeper) domain 

model—generated through a causal simulation of the plan to guide the debugging of the 

plan—to compensate for the inadequacies of the planner's own domain model. In contrast, the 

plan modification strategy proposed in PRIAR utilizes the plan validation structure, an automati- 

cally generated explanation of correctness of the plan with respect to the planner's own domain 

model, to integrate planning and plan modification and to ensure correctness of plan with 

respect to the planner. Since the cost of debugging tends to be very high17, a fruitful avenue 

of research might be to combine these strategies such that PRIAR's strategies are used to 

efficiently generate plans that are correct with respect to the planner, and the debugging stra- 

tegies are used to test and debug these plans with respect to external domain models. In this 

sense, PRIAR'S strategies are complementary to these debugging strategies. 

A significant amount of research in case-based reasoning addressed the issues involved in 

the adaptation of stored plans to new situations (e.g., [1,8,32]). In contrast to PRIAR, typically 

these modification strategies are not integrated with a generative planner, are not concerned 

with correctness and conservatism of modification, and are typically heuristic in nature. This is 

17 In [26], Simmons notes that the success of GORDlUS's Generate-Test-Debug paradigm rests on the presence 
of a robust generator since debugging is very costly. 
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to a large extent a reflection of the characteristics of the domains in which these systems were 
developed, where the need to avoid execution time failures is not as critical as the need to con- 
trol access to planning knowledge. For example, PLEXUS [1], an adaptive planner, starts with a 
highly structured plan library, and relies on the place of a plan in the background of other 
plans in the library to guide adaptation. PLEXUS works as an interpretive planner, and its pri- 
mary mode of detecting applicability failures is through execution time failures. When a 
failure is detected, PLEXUS attempts to exploit the helpful cues from the new problem situation 
to trigger appropriate refitting choices to repair those applicability failures, and execute the 
result in turn. Similarly, CHEF's [8] stored plans do not have explicitly represented dependency 
structure, and they are modified by domain dependent modification rules to make the old plan 
satisfy all the goals of a new problem. These modification strategies do not consider the inter- 
nal causal dependency structure of the plan, and thus may lead to incorrect plans even relative 
to the domain knowledge contained in the case-base and the modifier. CHEF presumes that its 
retrieval strategy and modification rules are robust enough to prevent frequent occurrence of 
such incorrect plans (as we discussed above, CHEF does test the correctness of its modification 
through a simulation with respect to an external domain model). In contrast to PLEXUS and 
CHEF, PRIAR is concerned with the correctness of the modified plan relative to the planner's 
own domain knowledge, and uses the plan validation structure to ensure this. This capability 
is important both because debugging itself is a very costly operation (see [26,27]) and because 
domain characteristics may put a very high premium on postponing all debugging to the execu- 
tion time. 

Finally, PRIAR'S approach to plan reuse is in the spirit of Carbonell's [2] proposed metho- 
dology for "problem solving by derivational analogy" which recommends remembering a full 
derivational history along with every problem solution, and using it to guide its analogical 
transformation later, PRIAR can be seen as a step towards the systematic exploration of the util- 
ity of including one class of information—the plan validation structure—in the stored deriva- 
tional trace. 

6.  Conclusion 
We presented a theory of plan modification that utilizes the validation structure of the stored 
plans to yield a flexible and conservative modification framework. The validation structure, 
which constitutes a hierarchical explanation of correctness of the plan with respect to the 
planner's own knowledge of the domain, is annotated on the plan as a by-product of the initial 
planning. Plan modification is characterized as a process of removing inconsistencies in the 
validation structure of a plan, when it is being reused in a new (changed) planning situation 
Annotation verification, a polynomial time process, carries out the repair of these inconsisten- 
cies. The repairs involve removing unnecessary parts of the HTN, adding new high-level tasks 
to it to re-establish failing validations, and exploiting any serendipitous effects to shorten the 
plan. The resultant partially reduced HTN with a consistent validation structure is given to the 
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planner for complete reduction. As the planner starts with a partially reduced HTN, it takes 

significantly less time on the average to produce a complete plan. This is supported by the 

results of the empirical studies in blocks world, which demonstrated 20-98% savings 

(corresponding to speedup factors of 1.5 to 50) over pure generative planning, with the highest 

gains shown for the most complex problems tested. 

We discussed the development of this theory in PRIAR, and characterized its complete- 

ness, coverage, efficiency and limitations. PRIAR's modification theory enables a planner to 

conservatively modify its plan in response to incremental changes in the specification, to reuse 

its existing plans in new problem situations, and to efficiently replan in response to execution 

time failures. While the plans made by PRIAR are at the same level of correctness as the ones 

that are made by the planner from scratch, in practical terms, PRIAR allows the planner to solve 

more problems in a "reasonable amount" of time and computational resources. This is very 

significant, since it enlarges the set of problems that are practically solvable by the planner. 

Currently, we are exploring the application of PRIAR modification strategy to more realistic 

domains [21], and investigating the methodology of plan modification in complex domains 

where the planner does not have access to all the domain knowledge and has to interact with 

other specialized domain modules [19]. 
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Appendix A. Trace output by PRIAR 
This appendix contains an annotated trace of the PRIAR program as it plans for a blocks 

world problem by reusing an existing plan. Specifically, it follows PRIAR in solving the 5BP 

problem shown on the right in Figure A.l by reusing an existing plan for solving the 6BS 

problem shown on the left. This example is specifically designed to show how PRIAR handles 

the failing filter condition validations, unnecessary validations and p -phantom validations (the 

capabilities that were not brought out in the example that was discussed in the paper). 

In this example, PRIAR's partial unification procedure generates two plausible reuse candi- 

dates for solving the 5BP pioblem from the 6BS plan Qines l-H). The plan kernel based ord- 

ering then prefers one of those candidates (60S, a=[A-*L,C-*0ß-*P J)->Af ,£-*N]) as 

better suited for solving the 5BP problem (lines 13-19). 
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Figure A.l. 6BS-»5BP Modification problem 
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1 PR1AR> (pUn-for problem *5bs-phantom-pyramid treuse t) 
2 Tiying to solve the problem by reusing old plans 

3 Calling... 
4 (REUSE-PLAN :GOALS «ON P O) (ON M N> (ON L P) (ON O M» 
5 JNPUT ((BLOCK P) (CLEARTOP O) (ON 0 P) (ON L TABLE) 
6 (ON P TABLE) (BLOCK 0) (BLOCK N) (BLOCK M) 
7 (PYRAMID L) (CLEARTOP M) (ON M N)) ) 
8 •••••••••••••••••••••••Retrieving similar old plan******************- 

9 RETRIEVE: There ire 2 possible Complete Matches. They are.. 
10 (((<Plan:^BS>) ((L A) (N E) (M D) (O C) (P B))) 
11 ((<Plan::6BS>) ((L B) (N F) (M E) (O D) (P C)))) 
12 • • • 
13 •••••••PLAN.KERNEL-BASE&ORDERING 
14 The Plan Choices ranked best by the Plan-kernel based retrieval Process are 
15 a<(<Plan::6BS>)((LA)(NE)(MD)(OQ<PB)))][18)) 
16 Choosing 
17 [((<Plan::6BS>) ((L A) (N E) (M D) (O Q (P B)))]{18) 
18 to be reused to solve the current problem 
19 Copying and Loading plan into memory 

20 using the following plan 
21 Plan Name: 6BS 
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22 Go»!s: ((ON B O (ON C D) (ON D E) (ON E F) (ON A B)) 
23 Initul Sute: ((BLOCK D) (BLOCK B) (BLOCK Al (CLEARTOP A) 
24 (BLOCK O (CLEARTOP D) (CLEARTOP C) (CLEARTOP B) 
25 (ON D TABLE) (ON C TABLE) (ON B TABLE) (ON A TABLE) 
26 (BLOCK F) (BLOCK E) (CLEARTOP F) (CLEARTOP E) 
27 (ON E TABLE)) 
2S         Plin Kemd: #<PLANKERNEL 10733054> 
29 The plan «... 
30 ••••• •  
31 7; JRIMmVE (PUT-BLOCK-ON-BLOCK-ACTION E F) IPrenodci:(21 22)1 liuccnodes: (6 1)] 
32 
33 6: :rREN{mVE (PUT-BLOCK-ON-BLOCK-ACTION D E) tPrenode«:(l 8 19 7)]  [Succnodes: (5 1)] 
34 
35 5: :PRIMmVE (PUT-BLOCK-ON-BLOCK-ACTION C D) (Prenodes:(15 16 6)]  tSuccnodes: (4 1)] 
36 
37 4: iPRMmVE (PUT-BLOCK-ON-BLOCK- ACTION B C) rPrcnodej:(12 13 5)J  [Succnodes: (3 1)] 
38 
39 3: tPRIMmVE (PUT-BLOCK-ON-BLOCK-ACTION A B) [Prenodes:(9 10 4)) [Succnodes: (1)J 
40 ••••••  

41 The mapping is [A-»LE-»ND-»MC-»OB-»P] 

Next, the 6BS plan is interpreted in the 5BP problem situation with the chosen mapping. 
The interpretation process, apart from marking various facts as in and out, finds that one of 

the goals of the 6BS problem, On(N,F), is unnecessary for solving 5BP problem (line 57). 

Figure A.2 shows the HTN of the 6BS plan after the interpretation process. 

42 ....................«.«i^^p^gj^CT*«...«.»»................ 
43 Mapping the retrieved plan into the current problem 
44 The mipping used is: [A-»L E->N D-»M C-»0 B-»P ] 
45 INTERPRET: tdding fact (ON O P) to the initul «Ute 
46 INTERPRET: adding fa« (PYRAMID L) to the initial cute 
47 INTERPRET: adding fact (ON M N) to the initial fUte 
48 INTERPRET: Maiking the fact (BLOCK L) in init-iute :out 
49 INTERPRET: Milking the fact (CLEARTOP L) in init-aute :out 
50 INTERPRET: Milking the fact (CLEARTOP P) in init-nate :out 
5! INTERPRET: Marking the fact (ON M TABLE) in init-nate :out 
52 INTERPRET: Muking the fact (ON O TABLE) in init-iute :out 
53 INTERPRET: Marking the fact (BLOCK F) in init-sute :out 
54 INTERPRET: Marking the fact (CLEARTOP F) in init-iute rout 
55 INTERPRET: Muking the fact (CLEARTOP N) in init-aute :out 
56 INTERPRET: Muking the fiel (ON N TABLE) in init-sute :out 
57 INTERPRET: Muking the goal (ON N F) in goal-Hate mimecessary 
58 INTERPRETation is over 

Next, PRIAR starts the annotation verification process; figure A.3 shows the HTN after this 
process. During the annotation verification process, PRIAR first considers the unnecessary vali- 
dation supporting the unnecessary goal On(N f) (lines 59-65). The appropriate repair action 
is to recursively remove the parts of the plan whose sole purpose is to achieve this validation. 
In this case, PRIAR finds that the sub-reduction below the intermediate level node 
ND0110: On(N\F) (the node with a single asterisk in Figure A.2) will have to be removed 
from the plan to take care of this unnecessary validation. Consequently, the annotation verified 
plan, shown in Figure A.3, does not contain any nodes of this sub-reduction. 

59 •••••••••••••••.••••••♦Annoution Vaificatian•*•••••••*•••, 

60 ANNOT-VERIFV: Suit 

61 ANNOT-VERIFY. Processing unnecessary goals (if sny) 
62 The god (ON N F) is UNNECESSARY 
63 laiBovt UsBfetsssry Goal: Pruning the reduction below the node 
64 {<H.:ND0110>[<X)AL(ON N F)]...} 
65 To like cue of this unnecessary goal. 
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Figure A.2. 6BS plan after interpretation 

1 Next, the annotation verification checks for any p -phantom validations. It finds that the 
validation supporting the goal On{Mfl) is a p-phantom validation since On(MJ1) was 
achieved through task reduction in the 6BS plan, while it is now true in the initial state of the 
new problem situation. PRIAR uses the planner's goal achievement procedures to check whether 
On(MJf) can now be established from the initial state. As this check is successful, PRIAR 
decides to shorten the plan by pruning the validation that is currently supporting the goal 
On(M fl), and to support On(M^f) by the new fact from the initial state. This pruning will 
remove the sub-reduction below the node ND0109: On{MJ1) (see the double-asterisked node 
in Figure A.2) from the interpreted plan. Consequently, the annotation verified plan, shown in 
Figure A.3, does not contain any nodes of this sub-reductioa 
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Figure A3. 6BS plan after annotation verification 

66 ANNOT.VERIFY: Processing p-phantom validations (if tny) 
67 The goal (ON M N) ii supported by • p-phamotn validation 
68 Checking to tee if it can be phantcmized 
69 Chttk-p-Pluuitoin.Validation: the condition (ON M N) 
70 can be established from new initial state!!! 
71 Clwck-p-PhaBtoin-Vatktattoa: Pruning the other contributor 

(<6:J<TX)268>(J'WMrTTvT-(PUr-BLOCK-ON-BLOCK-ACTION M N)l -) 
from the HTN 
Pruning the reduction below the node 
(<6::ND0109>[.<iOAL(ON M N))... J 

To uke care of this p-pbantom validation 

After taking care of unnecessary and p -phantom validations, the annotation verification 

procedure finds that the validation supporting the filter condition Block(L) is failing, because L 

is a Pyramid in the new problem situatioa The appropriate repair action is to replace the sub- 

reduction below the node which first posted that filter condition. In this case, PRIAR finds that 

the node ND0106: On(LJ>), which is an ancestor of the node with the failing filter condition 

validation, first posted the filter condition Block(L) into the plan. So it decides to replace the 

sub-reduction below this node. Consequently, the annotation verified plan in Figure A.3 con- 

tains a refit task REF1T-TASK0004: Achieve [On (L JP)] in place of the replaced sub-reduction. 

77 ANNOT-VERIFY: Processing extra goals (if any) 
78 ANNOT-VERIFY: Looking for failed validations.. 
79 The FILTER (:use-when) condition (BLOCK L) at node 

{<3:JJTXH3^[dPRIMnTV^<PLT-BUXXON-BLOCK-ACnONLP)j _.) 
is failing because of ant fact (BLOCK L) in <INTT-STATE> 

RDTTFn.TER.COND-FAILURE: Adding • refit-task 
(<REFIT-TASK000«>[JlEPLACE-REDUCnON(ON L P)] _) 

to re-reduce the node 
(<3::ND0106>[KJOAL(ON L P)J_.) 
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87 REFn"-^"DLTrS-COM>-FAILl.TlF-; Removing ihc rcj-!»ced reduction from the plan 

The annotation verification procedure goes on to find a second failing filter condition 

validation and a failing phantom condition validation 0>ncs 88-105). It repairs them by adding 

a second replace reduction refit task and a dephantomize refit task to the annotation-verified 

plan. Figure A.3 shows the partially reduced HTN after the annotation-verification process. 

This is then sent to the planner for refitting. 

U The FILTER (ruse-when) condition (ON O TABLE) 
19 «i node (<5::NXW251>lPRINimVE(PUTBLOCX-ONBLOCK-ACTION O M))...) if filling 
90 became of :out fact (ON O TABLE) in <JNTT-STATE> 

»ÖTr-rn.Tai.CONIx.FAILUir: Adding ■ refit-mk 
{<*EFnTASK0002>[:REPLACEREDUCnON0'Ur-BLOCKONBLOCK O M)l... ) 
to re-reduce the node 

(<5:uND0176>[:ACnON(PUT-BLOCX-ON-BLOCK O M)]...) 
REnT-nLTES-COND-FAILüRE: Removing the replaced reduction from ihe plan 

The :PRECOND condition (CLEARTOP P) at node 
{<4::ND0106> [JRIMrnVECPLT-BLOCK-ON-BLOCX-ACnON PO)) 

is filling became of :out fie: (CLEARTOP P) in <INTr-STATE> 

DEPIIANTOMIZE.GOAL: Adding refit-Utk 
(<REFrr-TASK0006>[:DEPHANTOMIZE(CLEARTOP P)]...) 
in the place of the phantom goal 
{<12:JsTX)154>t:GOAL(CLEARTOP P)]...) 

91 
92 
93 
94 
95 

96 
97 
98 
99 

100 
101 
102 
103 
104 
105 annot-verify: Entering refit-uslci into the plannen TASK-QUEUE in cmica order 

106 Entering (<REnT-TASK0004>[:REPLACE-REDUCTION(ONL P)]...) 
107 Entering {<REFn-TASK0002>[:REPLACE-REDUCTION(PUT-BLOCK-ON-BLOCK O M)]...J 
10S Entering (<REFrr-TASK0006>I£)EPllANrO\nZE(CLEARTOPP))...) 

109 ANNOT-VERIFY: END 

The planner starts by reducing the replace-reduction refit task corresponding to On(LJP) 

(lines 111-129). Since L is a pyramid, the planner finds that the only appropriate schema 

instance for reducing this refit task is MAKE-PYRAMID-ON-BIX)CK(L f). Next, since the refit 

task is a replace-reduction refit task, during installation, PRIAR finds that the e -precondition of 

the refit task that was supporting the condition Clear(L), is no longer required by the new 

schema instance (the reason being that L, which is a pyramid, is always clear). So the e- 

precondition is pruned from the HTN. After this, the planner goes on to reduce the refit task 

with the chosen schema. The other two refit tasks are also reduced in turn by a similar process 
(lines 135-141). 

Figure A.4 shows the result of refitting, which is a completely reduced HTN for solving 

the 5BP problem. The shaded nodes represent the parts of the 6BS plan that remain applicable 

to the 5BP problem, and the white nodes represent the reductions of refit tasks. There is no 

separate sub-plan for achieving the goal On{M JV) in this HTN since this is made true from the 

initial state of 5BP problem. 
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110 ' *C*Uing Generative Plsi 

111 rt-ANNFJl: Eipsndrig refit usk Achieve ((ON I. P>] 

112 ri-\NSFy: The uheni choices to reduce the refit t*ik are: 
113 ((SCÜ0021) HAKH-PYRAWn.ONni.OCKW1400iS:(ONLP) 
114 
115 
116 
117 
1 IS 
119 
120 
121 
12i 
123 
124 
125 

BY (<1 :NDOC:o>[^cnONfl'UT-Fi-RA>fID-ON-BLOCK LP))..| 
The choser schem« is : 
(SCliOMl) 

MAKF PYRAMID ON-BLOCK00140018:(ON L P) 
Expimicn: 

0 (<0 :NW0I^[:GOAL(CLnART0P P)]! 
1 (<1::NT»I120>!:ACTION(PLT-P^'RA>ÜIM)N-BLOCX L F)]) 

Conditions: 
«SC5125» JRECOND (CLEARTOP P) :.t 1   *rom (0) 
«SC5126» iLSE-WlIEN (PYRAMID L) :.t 0 :from (-24) 
«SC5127» :USE-WHEN (BLOCK P) M 1   tfram (-24) 

126 Install CIK**: Installing the schema ((SCH0021) 
127 MAKE-PYRAMII>-ON-BLOCKOO!40018::(ONLP)BY 
12S        (<l:JND002a>[ACnON(PUTPYRA.vnD-ON-BUXX L P)] ..) 
129     to Re-reduce the usi ((«REFIT TASK0CO4>[:REPLACE-REDi;CTION(ON L P)])) 

130 
131 
132 
133 
134 

The e -precondition (CLEARTOP L) of the tuk 
((<REFrr-TASK00Ol>[:REPLACE-REDi;CnONCON L P)])) 
is not required by the choser. schema 

So, pruning the validation corresponding to this {Kondition 
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136 rLANNM: r.pt.idirg Rtül unk Achieve [(ITT BI.OCX-ON'BLOCX O M)) 
137 riANNrP.: The Khcmi chon.-r* lo rr<hjce ihc re£t u*li ire: 
ns       (isaiooi7) pirr-ni.«xx-ON-Bi.ocKooi2tmi5 <nrr moexoN ru.r>cK o M) BY 
139 (■rfV:NTx»:M-Pwv.rn\T(n,T-nicx3;-ON BLOCK-ACTION O M») 

140 PlANNnt; E«p«nding Refii-ui* Achieve [(QilARTOP P)) 
141 The ir.fn-uik u PHANTOMBJID »ilh »n elTecl of Ihe uodc(s) 
142 ([<5.^'ttXi:6>!J,RlKirn%7:(PLT-BLOCX-ONllLXX:K-ACnON O M)l)) 

143 ••••The Pluming is OVER 
144 The plan is... 

145 •••••* «.»•••• •••• 
146 
147 5: :PRMTP/E (PLT-BLOCXON-BLOCK-ACTION O M) [.'n   -'a (5 15 16)j  [Sjcarode«: (3 1 4)) 
148 
149 4: J>RIMrnVE (PLTBLOCKONBLOCK-ACTION V O) [Piwod«:(12 5 13)]  [Succnoda: (23 1)) 
150 
151 3: 'JRMmVE (PtTPYKAVIU>ONBLOCK-ACnON L P)  .PraiodarOJ 0 5)j 'Sucaioda: (1)) 

152 ' 
153 
154 
155 
156 

•GOAL STATE"""""""« 
«SC0052» iFRECOND (ON OM):«l :from (5) 
«SC0061» :PRECOND (ON P O) :«t l :from (4) 
«SC006O» JRECOND (ON L P) :« 1 from (3) 
«SCOQ59» TOECOND (ON M N) :n 1   :from (0) 
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Appendix B. The Blocks World Domain Specification 

(setf *autocond* 0 
;;;Auiomatica!ly fill in sub-goals as preconditions of'riain goal steps 

(opschema   makc-pyramid-on-block 
rtodo (on ?x ?y) 
rexpansion   ((stcpl :goal (cleartop ?y)) 

(stcp2 :action (put-pyramid-on-block ?x ?>•))) 
renderings   ((stcpl -* stcp2)) 
rconditions ((:filter (pyramid ?x) :at stcpl) 

(:filter (block ?y) :at stcp2)) 
reffects      ((stcp2 :delcte (cleartop ?y)) 

(stcp2 :assert (on ?x ?y))) 
:variables   (?x ?y)) 

(opschema   make-pyramid-on-table 
rtodo (on ?x table) 
:cxpansion   ((stepl :action (put-pyramid-on-table ?x ?y))) 
rconditions ((:filtcr (pyramid ?x) :at stcpl)) 
reffects      ((stcpl rassert (on ?x table))) 
rvariables   (?x ?y)) 

(opschema   make-block-on-block 
rtodo (on ?x ?y) 
rexpansion   ((stepl :goal (cleartop ?x)) 

(step2 rgoal (cleartop ?y)) 
(step3 raction (put-block-on-block ?x ?y))) 

rorderings   ((stcpl -» step3) ( step2 -> step3)) 
rconditions ((:filter (block ?x) :at stepl) 

(rfiitei (block ?y) :at step2)) 
reffects     ((step3 :delete (cleartop ?y)) 

(step3 rassert (on ?x ?y))) 
rvariables   (?x ?y)) 

A :i' 

§ 

(opschema   make-block-on-table 
rtodo (on ?x table) 
rexpansion   ((stepl rgoal (cleartop ?x)) 

(step2 raction (put-block-on-table ?x table))) 
rconditions ((.filter (block ?x) :at stepl)) 
rorderings   ((stepl -» step2)) 
reflects     ((step2 .assert (on ?x table))) 
rvariables   (?x ?y)) 

(opschema   make-clear-table 
rtodo (cleartop ?x) 
.'expansion   ((stepl rgoal (cleartop ?y)) 

(step2 raction (put-block-on-table ?y table))) 
rorderings   ((stepl -* step2)) 
rconditions ((rfilter (block ?x) :at stepl) 

(: filter (block ?y) :at step2) 
(rfilter (on ?y ?x) rat step2)) 

reffects     ((step2 rassert (cleartop ?x)) 
(step2 rassert (on ?y table))) 

j 
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:variab!es   (?x ?y)) 

(opschema   makeclear-block 
:todo (cleartop ?x) 
:expansion   ((stepl :goal (cleartop ?y)) 

(step2 :action (put-block-on-block ?y ?z))) 
:orderings   ((stepl -» step2)) 
conditions ((:filter (block ?x) :at stepl) 

(:filter (block ?y) :at stepl) 
(:filter (block ?z) :at stepl) 
(:filter (on ?y ?x) :at step2) 
(: filter (cleartop ?z) :at step2) 
(:filter (not (equal ?z ?y)) :at stepl) 
(:filter (not (equal ?x ?z)) :at stepl)) 

:effects     ((step2 :assert (cleartop ?x)) 
(step2 :assert (on ?y ?z)) 
(step2 :delete (cleartop ?z))) 

rvariables   (?x ?y ?z)) 

(actschema   put-block-on-block 
:todo       (put-block-on-block ?x ?y) 
expansion ((stepl :primitive (put-block-on-block-action ?x ?y))) 
conditions ((:filter (block ?x) :at stepl) 

(:filter (block ?y) :at stepl) 
(:filter (cleartop ?x) :at stepl) 
(:filter (cleartop ?y ) :at stepl) 
Ofiltcr (on ?x ?z) :at stepl)) 

:effects    ((stepl :assert (on ?x ?y)) 
(stepl :assert (cleartop ?z)) 
(stepl :delete (cleartop ?y)) 
(stepl :delete (on ?x ?z))) 

variables   (?x ?y ?z) 
) 

x 

.' 

(actschema   put-pyramid-on-block 
:todo (put-pyramid-on-block ?x ?y) 
expansion   ((stepl :primitive (put-pyramid-on-block-action ?x ?y))) 
conditions ((.filter (pyramid ?x) :at stepl) 

(:filter (block ?y) :at stepl) 
(:filter (cleartop ?y ) :at stepl) 
(:filter (on ?x ?z) :at stepl)) 

effects     ((stepl :assert (on ?x ?y)) 
(stepl :assert (cleanop ?z)) 
(stepl :delete (cleartop ?y)) 
(stepl :delete (on ?x ?z))) 

variables     (?x ?y ?z)) 

Pß 

(actschema   put-block-on-table 
:todo (put-block-on-table ?x table) 
expansion   ((stepl :primitive (put-block-on-iable-action ?x table))) 
conditions ((:filter (block ?x) :at stepl) 

(:filter (cleartop ?x) :at stepl) 
(:fiiter (on ?x ?z) :at stepl)) 

effects     ((stepl :assert (on ?x table)) 
(stepl :assert (cleartop ?z)) 
(stepl :delete (on ?x ?z))) 
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rvariables     (?x  ?z)) 

(aetschema   put-pyramid-on-table 
:todo (put-pyramid-on-table ?x table) 
expansion   ((stcpl :primitive (put-pyramid-on-table-action ?x table))) 
:conditions ((rfilter (pyramid ?x) tat stepl) 

(rfilter (on ?x ?z) :at stepl)) 
reflects      ((stepl rassert (on ?x table)) 

(stepl rassert (cleartop ?z)) 
(stepl :delete (on ?x ?z))) 

:variab!es    (?x ?z)) 

(domain-axioms 
(*- (cleartop table) 

0 
;;(cleartop table) is always derivable 
(<- (not (cleartop ?x)) 

(on ?y ?x)) ;;if ?y is on ?x then ?x cannot be clear 
(<- (not (on ?other ?x)) 

(and (block ?x)(on ?z ?x))) 
;;if ?x is a block and ?z is on top of ?x, nothing else is on its top 
(<- (not (on ?z ?other)) 

(on ?z ?x)) 
;;if ?z is on ?x it is not on any other block 

(<r- (not (on ?x ?y)) 
(pyramid ?y)) 

•.-.nothing can be on the top of a pyramid 
(<- (equal ?x ?x) 

0 
;;equality axiom) 

(closcd-world-predicate 'equal :set t) 
r.record that equality is a closed-world predicate 
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